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Abstract
Long-term experiments (LTEs) offer unique insights into the effects of agricultural

practices on soil organic carbon (SOC). However, early LTEs commonly lack treat-

ment randomization, replication, and initial measurements of SOC. This creates a

potential problem of unmeasured confounding. We address this problem using the

Morrow Plots (established 1876) as a case study. We start with a standard mixed

effects model of SOC and add (i) a spatial kriging component and (ii) SOC measure-

ments in the sod perimeter of the experiment as an additional treatment level. We find

that much of the observed SOC variation between treatments after 145 years is not

due to treatments but other factors (e.g. initial SOC), attenuating treatment effects

by about 50%. Our study demonstrates that creative measurement and innovative

modeling can mitigate some deficiencies in early LTEs. However, our improved esti-

mates still have limited precision, suggesting the importance of careful design and

measurement in the first place.

Plain Language Summary
To study the effects of farming practices on soil organic carbon (SOC), modern exper-

iments measure SOC on different pieces of land, randomly assign different practices

to them, then remeasure SOC. However, older experiments were not randomized and

did not have the technology to measure SOC before the experiments started. This is

a problem for estimating the long-term effects of farming practices on SOC. In this

study, we show a way around this problem for an experiment started in 1876. We

measured SOC in the experiment and in the grass surrounding the experiment and

combined them in a spatial statistical model. We found that much of the observed

variation in SOC in year 145 in the experiment is not due to the experimental practices

but other factors such as SOC levels before the experiment, changing our estimates

Abbreviations: CI, (equal tail) credible interval; LTE, long-term experiment; NPK, nitrogen phosphorus potassium; SOC, soil organic carbon.
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of the impacts of the practices on SOC. Our findings highlight the importance of

carefully analyzing older experiments as well as adhering to best practices in new

experiments.

1 INTRODUCTION

Early long-term experiments (LTEs) offer a unique opportu-

nity to study the long-term effects of agricultural practices

on soil organic carbon (SOC). However, early LTEs tend to

lack initial measurements of SOC. In the absence of initial

measurements, it is still possible to estimate treatment effects

on SOC using randomized experiments. This is because in

a (well-designed) randomized experiment, factors such as

the distribution of initial SOC are independent of treatment

assignment (no confounding). However, randomization was

also lacking in early agricultural experiments (Fisher, 1928).

Thus, the longest LTEs, established in the 19th century, tend

to lack both initial SOC measurements and randomization,

posing a challenge for estimating long-term treatment effects

on SOC using standard approaches such as mixed effects

models.

We address this challenge using the second oldest con-

tinuous LTE in the world, the Morrow Plots, established in

1876 in Illinois, USA, to study crop rotation and fertiliza-

tion treatments on crop productivity and soil fertility. The

Morrow Plots lacks both initial SOC measurements and ran-

domization, raising the concern of confounding, specifically

a spatial pattern in (unmeasured) initial SOC that could be

correlated with treatment assignment. This concern was sup-

ported by measurements of SOC concentration (0–15 cm) in

the sod (established 1904) on the perimeter of the experiment

showing a strong spatial pattern (Darmody & Peck, 2019).

Darmody and Peck (2019) attempted to estimate treatment

effects on SOC by assuming that current SOC in the sod

perimeter reflected initial SOC in the experiment (established

1876). While innovative in identifying the sod perimeter as

an important source of information, this assumption has two

limitations. First, the assumption is strong: where there is now

sod was cropped for the first 30 years of the experiment and, as

the authors acknowledge, sod “is a poor analog of the original

tallgrass prairie.” Second, the assumption is crude: for each

location in the experiment, all SOC measurements in the sod

perimeter were considered equally plausible initial SOC lev-

els, regardless of proximity. Additionally, they were limited

by their measurements to 0- to 15-cm SOC concentrations,

rather than deep SOC stocks.

We use sod perimeter measurements and spatial modeling

to estimate treatment effects on deep (∼90 cm) SOC stocks

in year 145 of the Morrow Plots. Our approach addresses

the above limitations as follows. First, we consider the sod

perimeter as an additional experimental treatment plot so

that we do not need to make the questionable assumption

that sod SOC stocks reflect initial SOC stocks. Second, the

spatial component of our model, combined with the sod

perimeter measurements, allows us to account for the spatial

pattern of the SOC measurements and overcome confound-

ing. Our study demonstrates the power of new measurements

and statistical methods to mitigate the deficiencies of subop-

timal agricultural experiments and increase understanding of

management practices on soils.

2 MATERIALS AND METHODS

2.1 Experimental design

The Morrow Plots has a split plot design with three crop

rotation whole-plots established in 1876 (Caldrone et al.,

2024): maize, maize-soybean, and maize-oat-alfalfa (maize:

Zea mays, soybean: Glycine max, oat: Avena sativa, alfalfa:

Medicago sativa). Each rotation whole-plot is divided into

eight split-plots (10 m × 10 m) with three fertilization treat-

ments: unamended (n = 3), manure (n = 2; established 1904),

and nitrogen phosphorus potassium (NPK) fertilizer (n = 3;

established 1955). We note that the rotation whole-plots are

not replicated and fertilization split-plots are not random-

ized within each whole-plot (Figure 1). The perimeter of the

experiment is bluegrass sod (Poa pratensis; established 1904).

Manure and NPK were applied by hand or injected (in the case

of liquid manure), minimizing the possibility of spillover into

the sod. The experiment is situated on a fine, smectitic, mesic

Aquic Argiudoll (Flanagan series), developed on loess parent

material.

2.2 Measurements

In November 2021, soils were sampled by hydraulic probe as

intact cores (4.4 cm diameter) to a target depth of 100 cm

in the experiment (Figure 1). Cores were sliced in 15-cm

sections, weighed, air dried at 24˚C, and gently ground by

mortar and pestle to pass a 2-mm sieve. A subsample was

oven dried at 105˚C for 16 h to measure oven-dried bulk den-

sity given the known soil volume. SOC concentration was

measured by dry combustion. In August 2024, sod 1.5 m out-

side the perimeter of the experiment (Figure 1) was sampled,

processed, and measured using the same methodology. To
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F I G U R E 1 Experimental design of the Morrow Plots (established

1876 in east-central Illinois, USA) at the time of sampling in 2021 (year

145). Three crop rotation whole-plots (unreplicated) are subdivided into

eight split-plots with three fertilization treatments (non-randomized),

for a total of 24 experimental split-plots. Soils were sampled to ∼90 cm

depth at 48 locations within the experiment (n = 2 per split-plot) and at

16 locations in the sod perimeter. Soil organic carbon (SOC) stocks

were measured and adjusted to equivalent soil mass.

account for potential differences in bulk density, we expressed

SOC stocks on an equivalent soil (mineral) mass basis of 10

Gg ha−1 (approximately 90-cm depth) using interpolation by

monotonic smoothing splines (von Haden et al., 2020).

2.3 Treatment effect estimation

To estimate the effect of the treatments (rotation × fertiliza-

tion) on SOC stocks, we first fit a (log-)linear mixed effects

regression model to the measurements from the experiment.

We then expanded this model with a spatial component and

with measurements from the sod perimeter.

2.3.1 Unadjusted

We started with a log-linear model of SOC stocks:

log
(
SOC𝑖,𝑌

)
= 𝛼 +

𝑌∑

𝑦=1
𝜃𝑡[𝑖,𝑦],𝑦 + 𝜈𝑗[𝑖] + 𝜖𝑖 (1)

where SOC𝑖,𝑌 is the measured SOC stock at location 𝑖 in

year 𝑌 (i.e. present day), 𝛼 is the intercept, 𝑡[𝑖, 𝑦] is the treat-

ment at this location in year 𝑦 so that 𝜃𝑡[𝑖,𝑦],𝑦 is the coefficient

Core Ideas
∙ Long-term experiments (LTEs) offer unique

insights to agricultural practices.

∙ Many of the oldest LTEs are not randomized or

replicated and lack initial measurements.

∙ Spatial modeling and creative measurement (here

sod perimeter) can mitigate these issues.

∙ We demonstrate this for soil organic carbon at the

Morrow Plots (established 1876).

of that treatment in that year, 𝑗[𝑖] is the split-plot that the

location belongs to so that 𝜈𝑗[𝑖] is a split-plot effect, and ϵi
is a residual error. Each treatment 𝑡 consists of a rotation 𝑟

and a fertilization 𝑓 . We decomposed these coefficients into

the sum of a rotation coefficient, fertilization coefficient, and

rotation–fertilization interaction coefficient:

𝜃𝑡,𝑦 = 𝜃𝑟,𝑦 + 𝜃𝑓,𝑦 + 𝜃𝑟×𝑓,𝑦. (2)

2.3.2 Spatial adjustment

One way to account for potential spatial patterns in the regres-

sion model is to include row and column effects as well as

directional (N-S and E-W) linear trends. We instead opt to

use kriging (Gaussian processes) because it is more flexible,

accommodating nonlinear patterns. Specifically, we have

log
(
SOC𝑖,𝑌

)
= 𝛼 +

𝑌∑

𝑦=1
𝜃𝑡[𝑖,𝑦],𝑦 + 𝜈𝑗[𝑖] + 𝜂𝑖 + 𝜖𝑖 (3)

where 𝜂𝑖 is a spatial term with exponentiated quadratic

variogram (Gelfand et al., 2010).

2.3.3 Spatial sod adjustment

While the spatial adjustment above is a step in the right

direction, the treatment effects are not identified by the exper-

imental data alone due to confounding (see Section 1). To

rectify this, we add sod observations in the spatial model,

expanding the set of treatment-year effects 𝜃𝑡,𝑦 to include sod

post 1904 (when the sod was planted).

2.3.4 Estimation

Our goal was to estimate the cumulative effect of each

treatment over the duration of the experiment. We included
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F I G U R E 2 Rotation and fertilization treatment effects at the Morrow Plots estimated using three different models: unadjusted, spatial, and

spatial sod. (a) Effect of each of the nine treatment pairs compared to the reference of unamended maize. (b and c) Marginal effect of the three levels

of each treatment factor, compared to a reference, and averaged across treatments of the other factor (see Section 2). Dots and bars show posterior

median, 50%, and 95% intervals. NPK, nitrogen phosphorus potassium.

time-varying effects to capture changes in treatments that

have occurred over the course of the experiment, in par-

ticular the introduction of manure (1904) and NPK (1955),

as well as sod (1904) which was previously cropped under

the adjacent rotation treatment (Aref & Wander, 1997). We

used weakly informative priors to estimate these time-varying

effects (Supporting Information).

The models were estimated using Markov Chain Monte

Carlo (Gelman et al., 2013). Diagnostics for convergence are

described in the Supporting Information. We used the proba-

bilistic programming language Stan (Carpenter et al., 2017)

via the brms (Bürkner, 2017) interface. Data and R source

code is provided.

Treatment effects were extracted from each model using

posterior simulation. For each rotation × fertilization treat-

ment, the effect was defined as the relative (%) difference

between predicted SOC stock under the treatment compared

to the reference treatment of unamended maize. Manure

and NPK treatment effects were estimated for 66 years of

application since NPK was introduced at the Morrow Plots

in 1955. We also computed marginal treatment effects on

each factor (rotation or fertilization) by averaging across

the other factor. For example, to compute the marginal

effect of manure compared to unamended, we averaged three

effects: maize manure compared to maize unamended, maize–

soybean manure compared to maize–soybean unamended,

and maize–oat–alfalfa manure compared to maize–oat–alfalfa

unamended.

3 RESULTS AND DISCUSSION

Measurements of deep (10 Gg mineral soil ha−1; ∼90 cm)

SOC stocks in the experiment had a median of 106 Mg C ha−1

(95% CI 85–165 Mg C ha−1), while in the sod it was 167 Mg

C ha−1 (95% CI 117–208 Mg C ha−1). Higher SOC on the east

and southeast of the sod perimeter, observed by Darmody and

Peck (2019) for 0-15 cm SOC concentration, were also seen

in our deep SOC stocks (Figure 1).

Using the unadjusted model, we estimate that compared to

no amendments, the marginal effect (see Section 2) of NPK

on SOC stocks was likely to be large and negative (−10%;

95% CI −23% to 5%), whereas the marginal effect of manure

was likely large and positive (8%; 95% CI −4% to 20%).

The unadjusted model also estimated a likely large, positive

effect of the maize–oat–alfalfa rotation (26%; 95% CI 0%–

57%) (Figure 2b,c). Treatment effects under this model are

likely to be large, but their precision is low so that the evidence

is also consistent with small effects. In addition to the lack

of randomization, replication, and initial SOC measurements,

 24719625, 2025, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/ael2.70020 by E

ric Potash - T
est , W

iley O
nline L

ibrary on [21/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



POTASH ET AL. 5 of 6

(a) Unadjusted (b) Spatial (c) Spatial sod

SOC stock
(Mg ha−1)

80

100

120

140

160

F I G U R E 3 Predicted soil organic carbon (SOC) stock maps under the three models considered if Morrow Plots was managed uniformly as

unamended continuous maize. Plot boundaries shown for reference. Each point is the posterior predicted median.

this uncertainty is influenced by the plot size and number of

measurements.

As hypothesized, the spatial model revealed that treatments

were confounded by spatial locations so that the treatment

effect estimates are all centered at zero with low precision

(Figure 2).

After accounting for spatial variation in SOC stocks in

the sod perimeter, treatment effects estimated by our pre-

ferred spatial sod model lie between the previous two models

(Figure 2). Compared to the unadjusted model, the spatial sod

model attenuated treatment effects by about 50% on average.

Specifically, we find attenuation of the formerly (i) large neg-

ative effect of NPK fertilizer (0%; 95% CI −10% to 11%), (ii)

large positive effect of manure (4%; 95% CI −6% to 13%),

and (iii) large positive effect of maize-oat-alfalfa (18%; 95%

CI −8% to 50%). The precision of our estimates remains

low, especially for the maize–oat–alfalfa rotation, which we

note had the greatest measured variability in SOC stocks

(Figure 1).

We investigated the differences between the models by pre-

dicting SOC stock maps under each model. Specifically, we

predicted the counterfactual in which the entire experimen-

tal area was planted to continuous maize and unamended.

The unadjusted model (Figure 3a) showed no spatial pattern

because the model does not have a spatial component, and

instead attributes all variability in SOC stocks to treatment

effects. The spatial model (Figure 3b) showed a significant

spatial pattern, overfitting the data and attributing almost

all variability to spatial variability. The spatial sod model

(Figure 3c) showed a similar spatial pattern to the spa-

tial model (e.g., hotspots in the SE and NE corners) but

much smaller in magnitude. The spatial sod model balanced

attributing variability in the data between spatial variability

and treatment effects.

4 CONCLUSION

We used perimeter measurements and spatial modeling

to mitigate challenges (lack of randomization, replication,

and initial measurements) in estimating long-term treatment

effects on deep (∼90 cm) SOC stocks in year 145 of the

Morrow Plots. More generally, this case study demonstrates

that creative measurement and careful modeling can mitigate

some design and measurement issues common to early LTEs.

However, the benefits of new measurements and modeling

may be limited, as evidenced by the relatively low precision of

our estimates. Thus, we emphasize the importance of careful

analysis of early LTEs as well as adhering to best practices in

establishing new experiments.
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