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Abstract
Agricultural carbon crediting predominantly relies on process-based biogeochemical models to
estimate accrual of soil organic carbon stock (SOC). We investigate the conditions under which it
may be economical to estimate SOC accrual by measuring and remeasuring SOC, which relies on
fewer assumptions than modeling. We analyze multi-field measure-and-remeasure SOC projects
with two key features: first, practice assignment is randomized to compare the effect of a treatment
(e.g. no tillage) to a control (e.g. conventional tillage); second, a random subset of fields is sampled
(two stage cluster sampling) to cost-effectively measure SOC changes. We use statistical modeling
to characterize the estimated treatment effect, accounting for within-field and between-field
variability in SOC change, as well as measurement error. We then use these statistics to evaluate
how prices for measurement, treatment, and carbon credits influence the economics of
measure-and-remeasure projects. We specifically investigate the potential advantages of larger
spatial scale (number of fields) and temporal scale (years before remeasurement). We find
economies of both spatial and temporal scale so that projects with thousands of fields, with only
about 10% of fields measured for SOC change, are likely to yield a competitive return on
investment in five years if the treatment effects found in the research literature can be achieved
commercially. Our analysis suggests that measure-and-remeasure can be cost effective in both
market and non-market SOC projects at scale. Moreover, measure-and-remeasure projects provide
valuable data for independent validation on commercial farms of the accrual rates estimated by
biogeochemical models using field trials. We provide next steps and software for researchers, credit
registries, and project developers to move forward with measure-and-remeasure SOC projects.

1. Introduction

Carbon crediting aims to incentivize practices that
reduce greenhouse gas emissions. Climate-smart
agricultural practices (e.g. no-tillage and cover crop-
ping) that can accrue soil organic carbon stock (SOC)
have received particular attention (IPCC 2022).
Measurement, reporting, and verification (MRV)
protocols set standards for how projects can receive

credits (Oldfield et al 2022). In general, a project
must estimate the total change in SOC under the pro-
ject, as well as the counterfactual total change that
would have occurred without the project. The dif-
ference between these changes is the SOC treatment
effect and is attributed to the project. Historically,
soil surveys and research have measured SOC change
using resource-intensive soil sampling and lab ana-
lysis. Many soil cores must be sampled since annual
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changes in SOC are small relative to their spatial vari-
ability and measurement error. The high demands
of measurement have raised questions about the
economic feasibility of a ‘measure-and-remeasure’
approach to SOC crediting (Bradford et al 2023).

To reduce costs, alternatives to traditional SOC
measurement are being developed including biogeo-
chemical modeling (Mathers et al 2023) as well as
in-situ (Wijewardane et al 2020) and remote (Wang
et al 2022) sensing. In particular, as evidenced by
its primacy in MRV protocols (Oldfield et al 2022),
an approach called ‘measure-and-model’ currently
dominates. In measure-and-model, traditional meas-
urements of SOC are taken before a project starts.
These measurements are used to initialize a process-
based biogeochemical model. Then, each year, the
model estimates changes in SOC at each measure-
ment location under the implemented practice, as
well as under a control (also known as baseline, coun-
terfactual, or business-as-usual) practice.

Besides the lower cost of modeling compared to
measurement, there are other reasons why SOC pro-
ject developers may prefer modeling. First, there is a
perception thatmeasurement alone is not economical
for generating carbon credits (Bradford et al 2023).
Some major MRV protocols do not even accommod-
ate measure-and-remeasure (e.g. CAR SEP). Those
that do allow it, may be unnecessarily onerous (Verra
VM0042; see discussion). Second, because developers
can model their project under a variety of scenarios
prior to implementation, the carbon credits that the
project will generate are well understood, making
earnings more reliable.

We investigate whether measure-and-remeasure
can be an economically feasible approach to SOC
crediting. Our motivation is that biogeochemical
models are developed using field trial data and we
lack evidence about their predictive performance
for SOC change across commercial farms (Ellis and
Paustian 2024). Measurement at commercial scale
is critical for building confidence that the effects of
climate-smart agricultural practices documented in
the academic literature for small experimental plots,
and predicted using soil biogeochemical models, can
be realized on commercial farms (Oldfield et al
2024). Compared to measure-and-model, measure-
and-remeasure approaches at commercial scales are
more direct and make fewer, more transparent
assumptions. As a result, there can be greater confid-
ence that SOC credits generated from well-designed
measure-and-remeasure projects reflect a real reduc-
tion (relative to the counterfactual) in atmospheric
CO2 concentration. While our focus is market-based
projects that sell carbon credits, we also discuss
implications for non-market projects (scope 3 emis-
sions ‘insetting’).

However, the feasibility of measure-and-
remeasure for estimation of small changes in SOC has

been questioned given the challenges of spatial vari-
ability and measurement error (Bradford et al 2023).
Indeed, on small spatial scales such as an experi-
mental plot or agricultural field, these challenges have
been shown to result in sample sizes that are prohib-
itively large for both inventorying and monitoring
SOC (Smith 2004). However, there is some cause for
optimism on longer time scales and larger spatial
scales (Saby et al 2008, Bradford et al 2023) where
we only need to estimate the average treatment effect
rather than the effect in any individual field. But there
are several gaps in applying these studies to evaluating
the economic feasibility of agricultural SOC credit-
ing projects. Saby et al (2008), for instance, estimate
sampling demands for a nationalmonitoring network
including woodland and grassland which, due to the
higher SOC variability that they document, require
more sampling resources than farmland. Moreover,
their objective is SOC monitoring rather than credit-
ing so they do not estimate the treatment effect due to
a change inmanagement.While Bradford et al (2023)
study SOC crediting, they only consider project sizes
up to 60 fields, whereas commercial projects can be
on the order of 10 000 fields (typically 10–50 ha per
field). Finally, to evaluate the economic feasibility of
an SOC crediting project, all relevant costs and reven-
ues should be quantified. Costs include sampling as
well as practice implementation, while revenues are
due to SOC credits. But neither Saby et al (2008) nor
Bradford et al (2023) considers economic feasibility,
instead defining feasibility in terms of sample size.
While de Gruijter et al (2016) perform an economic
optimization, they do not include the cost of prac-
tice implementation and their project design does
not estimate an SOC treatment effect nor do they
quantify the revenue from SOC credits, so they do
not evaluate economic feasibility.

Our work addresses these limitations of the SOC
measurement literature by simultaneously consider-
ing (1) economic feasibility, (2) large spatial scales
and (3) SOC treatment effects (as opposed to invent-
ory or monitoring). Our specific contributions are
as follows. First, we develop a multilevel statistical
model of measure-and-remeasure SOC projects that
accounts for the challenges of within- and between-
field variability in SOC changes and measurement
error. Second, we design a measure-and-remeasure
project that supports efficient and rigorous infer-
ence of the treatment effect (figure 1). To rigor-
ously estimate average SOC changes under both
treatment and control, the design includes random-
ized management practice assignment (among non-
randomly enrolled fields). For efficiency, the design
also includes a two stage cluster sampling strategy,
in which a subset of fields are randomly selected for
sampling. A key parameter of the project is its scale,
both spatial and temporal.We investigate project spa-
tial scales from 100 to 100 000 fields and temporal
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Figure 1. Flowchart of proposed SOC crediting project
using randomized treatment assignment, two stage
sampling, and compositing. Abbreviations: SOC (soil
organic carbon stock), ESM (equivalent soil mass).

scales from 1 to 10 years. Finally we evaluate the eco-
nomic feasibility of these projects as a function of
their scale and economic parameters such as prices for
sampling, treatment, and carbon.

2. Materials andmethods

First we parameterize the dynamics and econom-
ics of a measure-and-remeasure SOC project with
randomized practice assignment and two stage ran-
dom sampling in which a random subset of fields
are selected for measurement. Next we discuss eco-
nomic feasibility. Finally we describe how to answer
questions about economic feasibility using numerical
optimization.

2.1. Project parameters
We statistically model the SOC project using four cat-
egories of parameters (table 1): scale (number of fields
N and years to remeasurement Y), design (e.g. pro-
portion of fields assigned to control), carbon dynam-
ics (e.g. average treatment effect), and economics (e.g.
price for carbon credits).We choose default values for
the SOC and economic parameters in a way that is
optimistic but conservative (see SI) and also assess the
sensitivity of our results to these choices.

We directly model the SOC changes (table 1(b))
on which credits are issued rather than the abso-
lute SOC. We decompose the changes into a pop-
ulation average treatment effect (τ̃) with between-
field variability (σb) determining field-level average

changes andwithin-field variability (σw) determining
location-level changes (figure 2). Note that between-
field variability σb = 0.5 was estimated (see SI) from
a no-till study ‘representing different soil associations
and precipitation distributions across Iowa’ (Al-Kaisi
and Kwaw-Mensah 2020). The SOC changes are not
observed directly butwith error due to relocation (σn)
since we cannot sample the same core twice (Poeplau
et al 2022, Lark 2009), as well as lab error (σl). Note
that our choice of σl = 2 Mg ha−1 corresponds to a
relative error of 4% in SOC concentration and 2% in
bulk density for 0–30 cm samples with average SOC
concentration 2% and bulk density 1.5 g cm−3.

The project design includes a randomized exper-
iment and two stage random sampling. A propor-
tion p1C of the N fields in the project are assigned to
the control practice. All of these fields are sampled.
Similarly a proportion p1T of the N fields are treated
and sampled. The remaining fields are treated and
unsampled. The sampling density (cores ha−1) in
control and treatment groups are d2C and d2T,
respectively. We assume uniformly random selection
of both practice assignment as well as fields for mon-
itoring and locations within each monitored field for
sampling. This design is conservative given the poten-
tial for techniques such as stratification and pairing
to reduce estimation uncertainty (Potash et al 2023).
Finally, within each field, random sets of n3C and n3T
cores in control and treatment fields, respectively, are
composited for lab analysis. Following standard for-
mulas (Brus 2022), the squared standard error of the
estimated mean change in the control group after Y
years is

SE2
(

̂∆SOCC,Y

)
=

Yσb
2

Np1C
+

Yσw
2 + 2σn

2

Np1CAd2C

+
2σl

2

Np1CAd2C/n3C
(1)

with a similar squared standard error SE2( ̂∆SOCT,Y)
in the treatment group (see SI). Since these sampling
errors are independent, the squared standard error
of the estimated treatment effect is the sum of the
squared standard errors in each group:

SE2
(
τ̂Y

)
= SE2

(
̂∆SOCC,Y

)
+ SE2

(
̂∆SOCT,Y

)
.

(2)

These design parameters are selected to maximize
economic feasibility (see below).

The project incurs two costs: measurement and
payments to farmers. Formeasurement, there is a cost
per field visited, per core sampled and processed, and
per (composite) sample analyzed, with default values
based on labor and transportation costs and a survey
of commercial services currently available in the US
(see SI). Note that we assume that at remeasurement
two depths are sampled to enable equivalent soil mass
(ESM) comparison (von Haden et al 2020). Farmers
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Table 1. Parameters describing (a) scale, (b) SOC, (c) design, and (d) economics. Abbreviations: SOC (soil organic carbon stock), SD
(standard deviation).

(a) Project scale parameters

Description Comments

N Number of fields in project Larger N increases potential SOC stored at
project level

Y Time until remeasurement (years) Larger Y increases SOC accrued at cost of
waiting for credits

(b) SOC dynamics parameters

Description Default Comments

τ̃ Average treatment effect (Mg C ha−1 y−1) 0.3 Larger τ̃ makes projects more feasible
σb Between-field SD in SOC change

(Mg ha−1 y−1)
0.5 Larger σb incentivizes sampling more fields

σw Within-field SD in SOC change
(Mg ha−1 y−1)

1 Larger σw incentivizes more samples within
field

σn Relocation SD (Mg ha−1) 5 Larger σn incentivizes more samples within
each field

σl Lab measurement SD (Mg ha−1) 2 Larger σl incentivizes more assays
A Field size (ha) 25 Larger A increases potential SOC stored per

field

(c) Experimental and sampling design parameters

Description Comments

p1C Proportion of fields assigned to control Larger p1C reduces uncertainty in control
estimates at the cost of storing carbon at
project level

d2C Control sampling density (samples ha−1) Larger d2C reduces uncertainty in the effect
of control practice

n3C Control cores composited per assay Larger n3C increases lab errors in control
estimates

p1T Proportion of fields treated and sampled Larger p1T reduces uncertainty in treatment
estimates

d2T Treatment sampling density (samples ha−1) Larger d2T reduces uncertainty treatment
estimates

n3T Treatment cores composited per assay Larger n3T increases lab errors in treatment
estimates

(d) Economic parameters

Description Default Comments

PCO2 Sale price of carbon credit ($/Mg CO2) 40 Larger PCO2 increases carbon credit revenues
zdeduct Uncertainty deduction (unitless) 0.43 Larger zdeduct incentivizes more sampling
cC Control practice payment ($ ha−1 y−1) 25 Larger cC increases costs
cT Treatment practice payment ($ ha−1 y−1) 25 Larger cT increases costs
c1s Cost to visit a field for sampling ($) 400 Larger c1s incentivizes sampling fewer fields,

higher density
c2s Cost to sample and process a location in a

field ($)
15 Larger c2s incentivizes sampling more fields,

lower density
cl Cost to analyze a sample ($) 20 Larger cl incentivizes more compositing
rb Alternative investment real annual return

(%)
5 Larger rb incentivizes shorter

remeasurement Y

are paid per hectare per year for both treatment and
control practice. The cost of no-till varies (Havens
et al 2023) andmay actually reduce costs compared to
conventional tillage (Che et al 2023). We set a default
treatment payment of cT = $25 ha−1 y−1 and an equal
control payment. Project earnings are from selling
carbon credits, with a default price of PCO2 = $40

per tonne CO2 which is conservative compared to
recent SOC credit sales of $100 per tonne. The num-
ber of credits sold is equal to the estimated treat-
ment effect τ̂ minus an uncertainty deduction, which
is assumed (following Verra VM0042 version 2.0) to
be 0.43 standard errors SE(τ̂) (SI equation (21)). We
note that farmers do not assume any financial risk
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Figure 2. Simulated SOC changes over Y = 10 years with mean effect τ̃ = 0.3 Mg C ha−1 y−1 at (a) the field level and (b) the
location level. In the top panel of (a) each line is the average SOC change across a field (100 fields shown) under treatment (red)
and control (green). The between-field variability is governed by σb = 0.5. The thick lines highlight a single field that is explored
in (b), where each line is a location (100 locations shown) within the highlighted field. The within-field variability is controlled by
σw = 1. The bottom panels show the corresponding treatment effects, i.e. the differences between treatment and control changes
on the field or location level. Since each field receives either treatment or control, treatment effects are unobserved. Moreover,
treatment and control changes are measured with relocation error (σn) and lab error (σl). Note these simulations use normal
distributions and zero trend in the control group, though this is not an assumption in our analysis. Abbreviations: SOC (soil
organic carbon stock).

for treatment effectiveness: farmer payments here are
made annually for practice change (treatment group)
and practice maintenance (control group) and do not
depend on SOC accrual. However, after SOC credits
are sold, any profits may be shared with farmers.

2.2. Economic performance
To summarize the economic performance of the SOC
project we use the Sharpe ratio (Sharpe 1966). In
business and finance, the Sharpe ratio is a common
measure of the performance of an investment defined
as

E [ROI]−ROIb√
Var [ROI]

(3)

where E[ROI] is the expected return on the invest-
ment (SOC project),

√
Var [ROI] is its standard devi-

ation, and ROIb is the return of an alternative invest-
ment. Here we set ROIb to be the minimum return
for the SOC project to be attractive. The numerator
is thus the ‘excess return’, in expectation, of the car-
bon project over the minimum.We calculate ROIb by
assuming that the costs of the project (measurements
and farmer practice payments; see SI) are instead
invested with a real annual return rb. Assuming a

private equity ‘hurdle’ of 7% and a 2% inflation rate,
we set rb = 5%. Note that we have not adjusted the
prices (table 1(d)) in the SOC project for inflation.
If these prices keep pace with inflation, the project
ROI is then also in real terms. However we note that
there are many factors influencing these choices that
are beyond the scope of this study.

The Sharpe ratio was selected to assess eco-
nomic feasibility because it captures the following
important features: the expected return including an
uncertainty deduction due to measurement variabil-
ity (equation (2)); the time value of money, as cap-
tured by the alternative investment; uncertainty, here
due to measurement variability as well as variation in
the treatment effect (SI, equation (23)). We note that
de Gruijter et al (2016) also analyzed the economics
of SOC crediting (albeit for SOC change rather than a
treatment effect) though their objective only included
the first of these three features.

A large Sharpe ratio can come about in two
ways: a large expected return on investment or a
small variability in return on investment (or both).
Maximizing the Sharpe ratio is akin to maximiz-
ing the probability that the investment outperforms
the alternative investment. If returns follow any of
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Figure 3. Economies of spatial scale in a project with 5 years to re-measurement. (A) The return on investment in expectation
(dots) increases with the number of fields while the standard deviation (error bars) decreases. The dashed line shows the return
on an alternative investment for comparison. (B) The Sharpe ratio, a summary measure of the returns taking into account their
expected value, standard deviation, and the alternative. An investment with a Sharpe ratio of 2 (dashed line) or above is generally
considered attractive. (C) Distribution of costs and earnings. As the size of the project increases, the variability in the carbon
credit earnings decreases, as does the uncertainty deduction. The measurement costs and farmer payments are constant. Thus the
profit increases and its uncertainty (error bar) decreases.

a variety of probability distributions then a Sharpe
ratio exceeding 2.0 implies that the investment out-
performs the alternative with approximately 95%
probability. Note this is equivalent to the net present
value of the investment having a 95% probability
of being greater than zero. Although we recognize
that investment decisions are influenced by mul-
tiple factors, in our analysis we define an SOC pro-
ject to be economically feasible if its Sharpe ratio
exceeds 2.0.

2.3. Optimization
Using the equations above, we can calculate the
expected return on investment as well as its standard
deviation as a function of the parameters (table 1).
Then we can calculate the Sharpe ratio to summar-
ize economic performance (equation (3)). We then
perform two kinds of optimization. First, viewing the
carbon and economic parameters as well as the num-
ber of fields (N) and years to remeasurement (Y) as
fixed, we can maximize the Sharpe ratio, as a func-
tion of the remaining design parameters (table 1(c)).
If this maximized Sharpe ratio exceeds 2.0 we say
that this project is economically feasible. Second, we
can target a particular level of an outcome, e.g. eco-
nomic feasibility defined as a Sharpe ratio equal to
2.0, and then optimize a different parameter using
constrained optimization. For example, we can find
the minimum carbon price PCO2 that is economically
feasible, i.e. the sensitivity of economic feasibility to

the carbon price. Optimization, analysis and visualiz-
ationwere performed in R version 4.0.3 (RCore Team
2020).

3. Results

We investigate the effects of spatial and temporal
scale on the economic feasibility of measure-and-
remeasure SOC projects. The parameters in our
model are initially chosen to reflect the SOC char-
acteristics and economics of no-till agriculture in
the U.S. Midwest. We then assess the sensitivity of
our analysis to these choices, and in the discus-
sion we comment specifically on practices such as
cover cropping as well as combinations of mul-
tiple practices. These results and their sensitivity
to assumptions can be interactively explored at
https://asc.illinois.edu/soc-econ (R source code
provided).

3.1. Economy of spatial scale
We start by investigating, under the default SOC and
economic parameters, projects with Y =5 years to
remeasurement and increasing numbers of fields N
from 100 to 100 000. Note that SOC crediting pro-
jects on this scale are currently being developed using
measure-and-model approaches (Indigo 2024). We
find that larger projects are able to achieve higher
expected returns as well as reduce the uncertainty in
their returns (figure 3). Under our default SOC and
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Figure 4. Allocation of samples optimized to maximize Sharpe ratio as a function of the number of years to remeasurement (Y).
These values are approximately independent of the project size (N). As Y increases, between-field variation also increases while
within-field variation increases relatively slower since most within-field variation is due to relocation error (equation (1)). As a
result, it is advantageous to increase the proportion of fields sampled p1· while decreasing sample density d2· within those fields.
We also note that, since control fields do not generate carbon credits, it is (for any Y) more profitable to allocate fewer control
fields (blue bars shorter than red on left) but sample them more densely (blue bars taller than red on right). Finally, the optimal
number of cores per composite lab analysis is 4 for all years in both treatment and control.

economic parameters, projects over about N = 5000
fields meet our economic feasibility criterion of a
Sharpe ratio exceeding 2.0.

We find that the optimal project design depends
on the time to remeasurement and is approximately
independent of the number of fields (figure 3). For
the 5 years to remeasurement considered here, meas-
urements cost about $3 per hectare per year, much
less than the farmer payments which are $25 per hec-
tare per year. The optimal proportion of fields alloc-
ated to the control group (all of which are sampled)
is p1C = 4%, with p1T = 8% of all fields being treated
and sampled, and the remaining 88% of fields being
treated and unsampled. In the control fields, a density
of d2C = 3 samples ha−1 is optimal, whereas within
the treatment fields the optimal density is d2T = 1
samples ha−1. We note that the greater number of
treated than control fields sampled reflects the fact
that every additional control field is one fewer treat-
ment field from which to earn SOC credit revenue.
The greater sampling density in control compared
to treatment fields helps to equalize the estimation
error in the control group compared to the treat-
ment group. Finally, in both treatment and control
groups, each lab analysis is performed on a composite
of n3C = n3T = 4 random cores per field, resulting in
about 1 lab analysis ha−1.

Since the optimal sampling parameters are inde-
pendent of the spatial scale, the project costs (meas-
urement and treatment) per hectare per year are
also independent of the spatial scale. The econom-
ies of scale are then a consequence of reduced uncer-
tainty in estimated SOC accrual, which leads to both
greater expected revenue (through a smaller uncer-
tainty deduction), aswell as reduced variability in rev-
enue (figure 3).

The underlying cause of declining uncertainty
with increasing spatial scale is that the sources of vari-
ability (equations (1) and (2)) do not increase pro-
portionally with increasing N. An assumption within
ourmodel was that between-field variability σb = 0.5,
is independent of the number of fieldsN.We note that
in practice σb may increase with N. For example, a
small project, if it occurs in a single county, may have
smaller σb than a large, multi-state project. However,
to negate the economyof spatial scale in between-field
variability, we would need σb in a 10 000 field project
to be about 10 times larger than in a 100 field pro-
ject, which is extremely unlikely due to physical con-
straints on the range of SOC changes. Moreover, the
other sources of variability (within-field, relocation,
and lab) are unlikely to increase with spatial scale.
In conclusion, we have high confidence in the eco-
nomy of spatial scale inmeasure-and-remeasure SOC
projects.

3.2. Economy of temporal scale
Next we investigate how the economics of a carbon
credit project of a fixed size N = 10 000 fields vary as
a function of the number of years to remeasurement
Y. Unlike with spatial scale above, the optimal design
varies strongly with temporal scale (figure 4). As Y
increases, the proportion of fields sampled increases
while the sampling density decreases. This is driven
by the fact that, as Y increases, between-field variab-
ility of SOC changes increases faster than within-field
variability, which is dominated by a fixed relocation
error.

This optimized design produces an economy
of temporal scale. A 10 000 field project with
10 years to remeasurement has a Sharpe ratio
of 3.6 (figure S1), suggesting a less than 0.1%
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Figure 5. Sensitivity of minimum feasible carbon price (PCO2, vertical axis) of Y = 5 year projects as a function of average
treatment effect (τ̃ , horizontal axis) and project size (N, color), with other parameters at their default values (table 1). For
example, with τ̃ = 0.3 Mg C ha−1 y−1, a project of N = 100 fields (red curve) is economically feasible at a carbon price of at least
$200 while a project of N = 100 000 fields (purple curve) is feasible down to $31. Dashed lines indicate default values τ̃ = 0.3 and
PC02 = $40.

probability of performing worse than an altern-
ative investment returning 5% annually. This is
despite the fact that, as Y increases, the absolute
return of the alternative investment increases to
over 25%.

Similar to the economy of spatial scale, we
emphasize that this economy of temporal scale is
a consequence of the nature of SOC change and
measurement variability. While two sources of uncer-
tainty (within- and between-field variability in SOC
changes) do increase with time, the other two sources
of uncertainty (relocation and lab variability) do
not increase with time. Thus our confidence is high
that increasing (to a point) the number of years to
remeasurement increases the economic feasibility of
a measure-and-remeasure SOC project.

3.3. Sensitivity analysis
If a project is economically feasible at our default car-
bon price ofPCO2= $40 per tonne, then it is feasible at
higher prices as well. But wemay ask, how low can the
price be before the project is infeasible? Conversely,
for projects that were infeasible at $40, we may ask,
how high must the price be before they become feas-
ible? We address these questions using constrained
optimization. We find that larger projects are feas-
ible down to carbon prices of about $30 per tonne
and that projects as small as 250 fields are feasible
at a price of $100 per tonne on a 5 year timeframe
(figure 5; box 1).

We performed similar sensitivity analyses for all
of the major parameters in our model (figure S2). In
summary, in addition to the carbon price and aver-
age treatment effect above, another parameter that

was an important constraint on economic feasibility
was the treatment payment. With other parameters
at their default values, the highest treatment payment
that was economically feasible was cT = $30 ha−1 y−1.
However this is not surprising since under the default
assumptions of PCO2 = $40 per tonne CO2 and
τ̃ = 0.3 Mg ha−1 y−1, the implied value of treatment
is $44 ha−1 y−1.

In contrast, the variability and measurement cost
parameters did not pose a major constraint on eco-
nomic feasibility for larger projects on longer time-
frames (⩾5 years). We also considered the possibility
of autocorrelated changes in field- and location-level
SOC and found our economic feasibility results to be
robust to this modification (figure S3).

Box 1. Example project of 250 fields over
5 years and $100 per tonne CO2.

First, N = 250 fields spanning 6250 ha are
enrolled. Next, 34 fields (p1C = 14%) are ran-
domly selected for control practice, with the
remaining fields being treated. All p1C fields,
along with 95 treatment fields (p1T = 38%),
are sampled to 30 cm at densities of 3.8 and
1.4 samples ha−1, respectively. Within each
sampled field, random groups of 4 cores each
are composited for lab analysis (about 1.0
and 0.4 analyses ha−1 in control and treat-
ment, respectively). We note that because only
52% of fields are sampled, averaged across
the project area this amounts to 1.1 samples
ha−1 and 0.3 lab analyses ha−1. Following this
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baseline sampling, the treatment group receives
treatment for 5 years. Follow-up sampling occurs
at the same fields and locations, with two
depths per core to facilitate ESM comparison.
These measurements are used to issue and
sell carbon credits. The total cost of measure-
ment is about $400 000 ($13 ha−1 y−1) while
the total farmer payments are about $800 000
($25 ha−1 y−1). The project is expected to accrue
about 8000 Mg C (0.26 Mg C ha−1 y−1). The
standard error on the accrual is about 2000MgC
(0.05 Mg C ha−1 y−1), so that after uncer-
tainty deduction the project is credited for about
7000MgC (0.24Mgha−1 y−1). At a price of $100
per tonne CO2 the project is thus expected to
earn $3± 0.7 million ($95± 21 ha−1 y−1). This
gives a return on the $1.2 million investment of
127% ± 56%. Had the sampling and measure-
ment costs over these five years been put toward
an investment with 5% annual return, the total
return would have been 18%. Thus this project
has a Sharpe ratio of 2.

4. Discussion

There is a general perception that measuring SOC
treatment effects in commercial projects is econom-
ically infeasible due to the small signal of change rel-
ative to spatial and measurement variability (Smith
2004, Bradford et al 2023). To investigate this per-
ception, we developed a statistical model of multi-
field agricultural SOC dynamics that represented the
challenges of between-field, within-field, and meas-
urement variability in SOC. Coupling the statistical
model with prices for measurement, practice adop-
tion, and carbon credits, we confirmed that measure-
and-remeasure is not economical for small projects
on short timeframes. However, we found that larger
projects and/or those that wait longer for remeas-
urement are economical under our default assump-
tions. Only a small proportion of fields are selected
for sampling so that, while selected fields are sampled
intensively, sampling demands across the project are
relatively low. In such projects, measurement makes
up a small fraction of the total costs, which are dom-
inated by the treatment itself (i.e. annual payments
to farmers for practice change, such as no-tillage).
Our results, based on a sensitivity analysis, appear
robust and even optimistic when some of the default
parameters are perturbed. For example, raising the
price of SOC credits from $40 to $100 per tonne CO2

allowedmuch smaller projects (250 fields, with a sub-
set remeasured after 5 years: box 1) to be attractive
investments. We note that SOC credits have recently
been sold at this price. This evidence adds to recent
work on the feasibility of estimating SOC changes and
treatment effects (Bradford et al 2023).

Compared to past studies of SOC measurement,
our study is more directly relevant to agricultural
SOC crediting projects (see introduction) and our
findings are more optimistic for two reasons. First,
we analyzed a project that used a two stage cluster
sampling design which first randomly selects a sub-
set of fields and second randomly selects locations
within those fields to sample. While this design is
common in MRV protocols, we are not aware of any
SOC measurement research analyzing it. Compared
to the more common research designs of simple ran-
dom (e.g. Saby et al 2008) or stratified sampling (e.g.
Bradford et al 2023), two stage cluster sampling is
much more efficient, especially for larger projects
(figure S4) since it only samples a subset of fields.
Second, past research has largely assessed feasibility
in terms of sample densities, which requires a subject-
ive judgment about which sample densities are feas-
ible. However, we posit that a sample density per se
is neither feasible nor infeasible. Instead, we used the
criterion of economic feasibility in which a sample
density is feasible if its costs are outweighed by the
revenues from SOC credits that the measurements
generate and we developed a framework to estim-
ate these costs and revenues. We note that in two
stage cluster sampling only a small subset of fields are
sampled so that while sampled fields may have relat-
ively high sampling densities, total sample size across
the project is much lower (box 1).

Two major drivers of economic feasibility in
measure-and-remeasure projects are spatial and tem-
poral economies of scale. We have high confidence in
these benefits because they are consequences of basic
properties of SOC variability (see results). Note that,
for lack of information, we assumed a fixed between-
field variability (σb) and cost per field visit (c1s). As
a result, the economy of spatial scale is best con-
ceived as increasing the number of fields within a
fixed geographic extent. However, even with data on
how these parameters vary with the geographic extent
of a project, we expect our qualitative results to con-
tinue to hold because of physical limits on the range
of between-field variability (σb) and the fact that per
core (c2s) sampling costs dominated per field (c1s)
costs.

Our project used a randomized controlled trial
(RCT) design to address the so-called fundamental
problem of causal inference (Holland 1986): although
we can directlymeasure SOC changes in treated fields,
we cannot also measure the changes that would have
occurred in those same fields under the counterfac-
tual control practice. The RCT addresses this prob-
lem by assigning treatment or control practice ran-
domly among enrolled fields, relying on random-
ization to allocate fields across confounding pre-
dictors of SOC change and hence control for them
through study design. The result is that well-designed
RCTs have high internal validity, i.e. the ability to
robustly quantify the effect of treatment in the study
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population, which is the population of interest in a
carbon project. An alternative to this RCT design,
now represented in some of the major agricultural
SOC protocols (e.g. VM0042), is to treat all fields
in a project and pair them with control fields out-
side of the project. These control fields can then be
re-used across projects (Oldfield et al 2022), which
would bemore economical. However, pairing has dis-
advantages compared to randomization: we can only
pair on observable characteristics, which precludes
controlling for unobserved differences, e.g. a farmer’s
skill in sowing cover crops. Moreover, given the
large number of variables influencing SOC dynamics
(VM0042 matches on at least 14 variables), finding
appropriate matches may be difficult for some fields,
and may require more control fields than our RCT.
We recommend broader consideration of our RCT
design as a simpler andmore rigorous way tomeasure
treatment effects and issue carbon credits.

The measure-and-remeasure RCT project design
is not a panacea, and will have to deal with some
challenges. For example, if there is non-compliance
with practice assignment, estimation of the treatment
effect should be adjusted to account for it (Hernán
and Robins 2020). Randomization does not address
additionality or permanence, two general concerns
for SOC projects. Regarding additionality, it is not
possible to ensure that the management practice at
control sites is representative of the counterfactual
practice that would have occurred absent the pro-
ject and therefore whether the SOC accrual meas-
ured in the RCT is additional. Regarding permanence,
SOC credits are typically based on climate benefits
on a 100 year timescale. But uncertainty about future
management and climate is not addressed by shorter
term project design, regardless of the quantification
approach (measure-and-remeasure or measure-and-
model).

Our economic feasibility results would have been
different had we considered practices such as cover
cropping which can cost about $100 per hectare per
year (Bowman et al 2022), compared to the $25 we
assumed for no-till. At current carbon credit prices
(about $40 per tonne CO2), cover cropping costs
likely exceed the market value of the carbon accrued,
regardless of the quantification approach. It is pos-
sible that cover cropping is economical when imple-
mented in combination with other practices such as
no-till. But we note that earnings generated from
selling carbon credits are not the sole motivation for
climate-smart agriculture. Indeed, additionality cri-
teria for agricultural SOC protocols do not depend
on a project generating profit. Instead, carbon fin-
ancing simply has to be a necessary factor for a
farmer to make the practice change. Adoption of
cover crops, for example, can improve soil health,
reduce fertilizer application, and support adapta-
tion to extreme weather (Bergtold et al 2019). In a
measure-and-remeasure project, the measurements

themselves provide valuable knowledge. Thus SOC
credits are one of many benefits to consider in plan-
ning a climate-smart agriculture project.

We suggest that measure-and-remeasure projects
can help build confidence that SOC credits represent
real climate benefits (Badgley et al 2022, West et al
2023), ensuring continued supply of carbon finan-
cing. For example, measure-and-model approaches
are currently informed and validated using published
small plot field trials (Mathers et al 2023). There are
concerns that these trials do not have the external
validity necessary to independently verify measure-
and-model issued credits because, for example, the
small plot size and experimenter-controlled manage-
ment is not representative of the size nor manage-
ment of commercial fields (Ellis and Paustian 2024,
Kravchenko et al 2017).Measure-and-remeasure pro-
jects at commercial scale then can provide data which
can be used to independently verify measure-and-
model credits. Such an objective could also be used,
outside of carbon crediting, to test and develop the
ability of soil biogeochemicalmodels to estimate SOC
change at sub-regional and regional scales, such as are
currently used to develop national-level budgets for
agricultural emissions (Ogle et al 2023). There is also
an opportunity for a hybrid approach where model-
ing is used to issue annual payments to farmers while
carbon credits are ultimately issued based on remeas-
urement on a longer timescale (e.g. 5 years). To per-
mit project developers, carbon registries, researchers,
and government agencies alike to explore the costs
of conducting such measure-and-remeasure studies
across commercial fields, we developed an open-
source web application based on this study where res-
ults may be obtained for project-specific parameters
(https://asc.illinois.edu/soc-econ).

Recognizing that not all SOC projects are inten-
ded to sell carbon credits, we highlight that our
approach also permits entities such as agrifood pro-
ducers to estimate the cost of ‘inset’ projects that
reduce greenhouse gas emissions in their supply
chains. A measure-and-remeasure approach allows
such non-market projects to rigorously quantify the
SOC benefits of climate-smart agriculture (though
other greenhouse gas fluxes such as N2O will likely
need to be modeled). Note that measure-and-model
projects leave undetermined who bears responsibility
for model errors leading to flawed credits or insets:
the project developer, carbon market, credit buyer,
and/or society. Measure-and-remeasure shifts more
of this risk onto the project itself, building confid-
ence that the impacts of climate-smart agriculture
are real. This responsibility suggests that measure-
and-remeasure is, at minimum, a necessary comple-
ment to verify that measure-and-model approaches
can estimate SOC accrual rates at commercial scales.

Lastly, our work reveals shortcomings in our fun-
damental understanding of SOC dynamics, in partic-
ular the validity of extrapolating small plot research
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to landscape and regional scales. For example, the
most influential parameter in our sensitivity ana-
lysis was the average treatment effect τ̃ . This para-
meter has been estimated in scores of studies of dif-
ferent treatments in different locations (Nicoloso and
Rice 2021). Yet it is crucial to recognize that it is
unknown to what extent these small plot experi-
mental estimates can be extrapolated to large-scale,
commercial farms. Thus we do not know the utility
of these estimates for SOC markets as well as govern-
mental and academic efforts to understand the mit-
igation potential of climate smart agriculture (Buma
et al 2024). Our statistical framework highlights other
important and under-studied characteristics of SOC
including finescale spatial variability of SOC (σn)
and between-field and within-field variability in SOC
change (σb and σw). A Bayesian approach to project
design (Chaloner and Verdinelli 1995) could be used
to account for uncertainty in SOC dynamics. In the
SI we take a first step in this direction by allowing for
uncertainty in the average treatment effect τ̃ with a
parameter στ̃ .

In conclusion, our work shows thatmeasure-and-
remeasure SOC projects have the potential to rig-
orously quantify climate benefits and can provide
a competitive return on investment if these bene-
fits are realized. Moreover, such projects would serve
to validate the predominant measure-and-model
approach. We hope that these findings will spur
the development of measure-and-remeasure SOC
projects.
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