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Abstract14

Methods for measuring recreational water quality vary in analysis time, precision,15

availability, and cost. Decision-makers often use predictions from statistical mod-16

els to compensate for the shortcomings of available measurements. However, model17

validation and comparison has largely omitted measurement error (defined here as18

variation in both sampling and the measurement technique) as an important source19

of uncertainty during validation. It is unknown how this omission affects estimates of20

model performance and comparisons between models. This study aims to fill this gap.21

First we derive the bias incurred when omitting measurement error in calculating a22

model’s mean squared error. We then develop a non-parametric validation method to23

correct estimates of mean squared error. To study other metrics of prediction perfor-24

mance (mean absolute error, sensitivity, precision, etc.) we develop a second validation25

method that uses simulations from a Bayesian validation model. These methods are26

applied to a comparison of two prediction models (random forest and nearest neighbor)27

used to predict the level of fecal indicator bacteria at 9 recreational beaches in the city28

of Chicago. We find that accounting for measurement error significantly changes esti-29

mates of model performance. Moreover it reveals substantial uncertainty underlying30

some of these estimates.31

1 Introduction32

Recreational waterways are subject to contamination by bacteria from various33

sources including stormwater, sewage, and wildlife (Whitman & Nevers, 2008). To34

mitigate the public’s exposure to contaminated water and associated gastrointestinal35

illness (Prüss, 1998), managers of recreational beaches monitor the presence of fecal in-36

dicator bacteria (FIB) as a proxy measure of contamination. Managers issue warnings37

or close sites based on this information. There is a trade off between the protective38

public health benefits of these actions and the recreational benefits of access to wa-39

terways (Rabinovici et al., 2004). A major challenge in this decision process is how40

to appropriately account for measurement error in FIB data, which can be substan-41

tial (Whitman & Nevers, 2004; Whitman et al., 2010). Here we define measurement42

error as the combined effect of error in the measurement process and in-situ sampling43

variability.44

Measurement error has long been recognized as a major issue in water resources45

management, and the literature is rich with methods to incorporate measurement46

uncertainty in modeling and decision analysis. In hydrology, for example, Bayesian47

rainfall-runoff models have been developed to account for significant measurement error48

in catchment-scale precipitation to support improved parameter inference, predictive49

uncertainty bounds, and structural error diagnostics (Kuczera et al., 2006; Vrugt et50

al., 2008; Renard et al., 2011). Similar methods have also been extended to urban51

stormwater models to propagate bias and variance in both input (e.g. rainfall) and52

calibration (e.g., stormwater quality) data through the model fitting process (Dotto53

et al., 2014). Accommodations for measurement error have also been incorporated54

into decision-making processes, for instance with respect to groundwater remediation.55

For example, (Liu et al., 2012) used a value-of-information approach to estimate re-56

mediation cost reductions afforded by reduced model, parameter, and measurement57

uncertainty. Likewise, (Leube et al., 2012) used Bayesian methods to consider the ef-58

fect of integrated groundwater modeling uncertainties (including measurement error)59

on optimal sampling design.60

Measurement error has also played a prominent role in recreational water qual-61

ity analysis. Modeling in this literature is often oriented towards decision support,62

where model-based predictions of FIB concentrations (including estimated moments63

or percentiles of measured data) are compared to water quality standards to guide64

–2–



manuscript submitted to Water Resources Research

management actions. A significant body of work has considered the impacts of mea-65

surement error on these decisions. For instance, several studies have used Bayesian66

analyses to explore the potential of concentration-based FIB standards that account67

for measurement error in indirect FIB concentration proxy measures (Gronewold et68

al., 2008; Gronewold & Borsuk, 2010; Gronewold et al., 2017). A similar approach was69

used to show that a significant fraction of space-time variability in FIB proxy measures70

is driven by errors in measurement techniques and not underlying variability of in-situ71

FIB concentrations (Gronewold et al., 2013).72

When trying to improve water quality management decisions in the presence of73

model structural uncertainty, it is also common to compare the predictive performance74

of multiple FIB concentration models. In this facet of recreational water quality mod-75

eling, however, measurement error has been given less attention. When validating76

prediction models, we found that researchers often ignored measurement error, simply77

assuming that a measurement (or mean of multiple measurements) represented the true78

bacteria level (Nevers & Whitman, 2011; Francy, 2013; Shively et al., 2016; Lucius et79

al., 2019). This is true even in studies that consider measurement error in the model80

estimation process (e.g., see figure 5 and associated discussion in Gronewold et al.81

(2011)). The omission of measurement error thus distorts a comparison of prediction82

performance across models, although the magnitude of this effect is unknown.83

Given the methodological gap above, this study contributes two methods for84

model validation that account for measurement error when evaluating and comparing85

the performance of prediction models. The first is a non-parametric method that makes86

minimal assumptions but is limited to a single metric of model performance, namely87

mean squared error (MSE). The second is a Bayesian method that uses simulation from88

the posterior distribution of a Bayesian measurement error model. This method has89

the advantage of being applicable to any metric of model performance, including those90

assessing the utility of predictions for decision-making around management-relevant91

FIB thresholds.92

These methods are generally applicable to any inter-model comparison, and are93

thus relevant across a range of modeling exercises in water quantity and quality anal-94

ysis, not to mention other domains. However, they are particularly relevant to recre-95

ational water quality modeling given the common task of comparing multiple FIB96

concentration models for decision support and the high degree of measurement er-97

ror in these data. We thus demonstrate the approach in a case study of recreational98

beaches in Chicago, which has been used extensively to compare statistical models99

that aid in prediction of bacteria levels (Nevers & Whitman, 2011; Shively et al., 2016;100

Lucius et al., 2019).101

2 Materials and methods102

In our analysis we present both prediction models (section 2.2) and validation103

methods (2.3). The prediction models are used to predict FIB levels at unsampled104

beaches to support beach management decisions. The validation methods are used105

to evaluate and compare these prediction models and their resulting decisions. The106

focus of this study is on the methods for validation, not the specific prediction models107

being validated. We compare a commonly used method for validation (termed naive108

validation) against two new methods (a non-parametric method and Bayesian method)109

that account for measurement error. We note that Bayesian validation relies on an110

auxiliary model (termed the Bayesian validation model), which is used strictly to111

validate other prediction models and not for prediction itself (more detail given in112

section 2.3.4).113
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2.1 Study site and data114

The city of Chicago has 23 beaches along approximately 42 km of the Southwest115

shoreline of Lake Michigan. Of these, 19 beaches (figure 1) are currently subject116

to FIB monitoring during the swimming season from late May to early September.117

The beaches receive about 20 million visits during this period each year (Nevers &118

Whitman, 2011).119

Traditionally, administrators collected two samples per site for culture measure-120

ment of E. coli in terms of colony forming units (CFU) per 100 mL. Management121

decisions were made on the basis of the geometric mean measurement exceeding 235122

CFU/100 mL. Culture measurements take at least 12-24 hours due to the bacteria123

incubation period. Because water quality can change rapidly, decisions based on mea-124

surements that are subject to such delays are likely to result in unnecessary closures125

as well as exposure (Kinzelman et al., 2003).126

Starting in 2015, quantitative polymerase chain reaction (qPCR) measurements127

of Enterococci have been employed. This method quantifies indicator bacteria in less128

than two hours in terms of cell equivalents (CE) by comparing the sample to a calibra-129

tor with known number of Enterococci cells. A subset of these measurements are shown130

in figure 1. For details and comparisons of culture and qPCR measurements and their131

consequences see Noble et al. (2010), U.S. EPA (2012), and Dorevitch et al. (2017).132

Managers in Chicago currently estimate FIB levels at each beach each day using the133

geometric mean of two qPCR sample measurements. Management decisions are made,134

following U.S. EPA guidance (U.S. EPA, 2012), based on this estimate exceeding 1000135

CE/mL.136

Due to the cost of these measurements (Whitman et al., 2010) and the historical137

correlation of FIB levels between sites, the city has proposed reducing sampling to138

ten beaches and using a random forest (RF) model to predict levels at the remaining139

beaches (Lucius et al., 2019). The sampled beaches were chosen as follows. First, five140

beaches were selected to be sampled due to their historically high FIB levels. Next,141

the remaining beaches were grouped into five geographic clusters. Five beaches were142

selected to be sampled, one from each cluster. The five historically high FIB sites and143

five cluster representatives together give 10 sampled beaches, leaving 9 sites at which144

to make predictions (see figure 1). The prediction model uses daily meteorological and145

hydrological covariates collected between 2015-2019 for the months of May-September.146

2.2 Prediction models of bacteria levels at unsampled sites147

In this study we (re-)evaluate the predictions and management consequences of148

the RF model, and compare its performance against a benchmark NN model. The RF149

and NN models both serve as candidate prediction models. The purpose of this work150

is to assess how to validate and compare performance across prediction models given151

measurement error in the observations. We use the RF and NN prediction models152

to demonstrate our validation methods, but note that other prediction models could153

have been used for this purpose. Prior to describing the validation methods that are154

the focus of this work (see section 2.3), we first introduce notation and details of the155

specific predictive models used in the case study.156

We denote the true (unobserved) level of Enterococci natural log cell equivalents157

per mL (log CE/mL) by θjt with j = 1 . . . J a site index and t = 1 . . . T a day index.158

Let Yijt be the observed measurements of θjt. In our case we typically have two159

measurements Y1jt, Y2jt which are replicates, taken at the same time and location.160

Here we present NN-based and RF-based predictions of θjt at the prediction sites161

j. On day t, both predictions are based on the input vector of mean FIB measurements162
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Figure 1: (A) Map of the 19 recreational beaches in Chicago on Lake Michigan (see inset
for location within the Great Lakes) showing sample and prediction sites according to
the proposed targeted sampling design of Lucius et al. (2019) described in section 2.2.2
and (B) daily fecal indicator bacteria levels during the 2019 beach season at three nearby
sites. Gray circles are qPCR measurements (typically 2 per site per day), black line con-
nects daily mean measurements, red region is 95% interval of Bayesian validation model
posterior, and dashed line indicates action threshold of log 1000 cell equivalents (CE) per
mL.
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Ȳjt at the proposed ten sampled sites (figure 1). The RF prediction employs an163

additional input vector of K covariates Xjt varying by date and site. The outputs are164

predictions of the true FIB level at the proposed nine prediction sites.165

2.2.1 Nearest neighbor (NN) prediction model166

For prediction site j, let n(j) be the index (1, . . . , J) of the geographically nearest
sampled site (figure 1A). The NN model predicts the FIB level at site j on date t to
be equal to the mean level at this neighbor on the same date:

θ̂nn
jt = Ȳn(j),t. (1)

This model serves as a simple but practical benchmark.167

2.2.2 Random forest (RF) prediction model168

Lucius et al. (2019) proposed a “hybrid nowcast model” using a RF regression
model with 400 trees (Breiman, 2001). The outcomes used to fit the model were the
mean FIB levels at the prediction sites. The inputs to the model were the mean levels
at the sampled sites together with covariates. Formally we can write the prediction
model as a vector of functions

θ̂rf
jt(Ȳ

sample
t , Xjt) (2)

where Xjt is a vector of K = 11 covariates (varying by site and date) and Ȳ sample
t is169

the vector of average measurements at the ten sample sites on date t. For this study170

we refit the RF using our training set, which is larger than that of Lucius et al. (2019).171

The covariates Xjt mirror those of the original publication:172

• Precipitation: 1 and 2-3 day total rainfall, 1-2 day change in water level173

• Sunlight: 1 and 2-3 day average cloud cover174

• Wind: 1 day average N/S/E/W wind speed175

• Time: day of year, weekday indicator176

where the weekday indicator is an indicator for whether the date is a weekday or177

weekend and 1 day, 1-2 day, and 2-3 day covariates aggregate over the period 24178

hours, 24-48 hours, and 48-72 hours prior.179

2.2.3 Calibration of exceedance predictions180

The above are prediction models of continuous FIB levels, but decisions are based181

on the binary event of exceeding 1000 CE/mL (section 2.1), for which an FIB level182

prediction must be transformed into a binary exceedance prediction. Some of our183

performance measures (e.g. precision) evaluate these exceedance predictions. For the184

baseline NN prediction model, we predicted an exceedance whenever the predicted FIB185

was greater than the 1000 CE/mL threshold. Since the RF is known to produce biased186

predictions, Lucius et al. (2019) calibrated a custom threshold so that the resulting187

specificity (equivalently false positive rate) matched that of a reference model. We188

follow this approach, taking NN as the reference model.189

Exceedance could alternatively be predicted by modeling the binary outcome di-190

rectly, i.e. classification. However, we continue the standard practice in FIB prediction191

of modeling the continuous outcome, i.e. regression, as this uses all available informa-192

tion and allows us to use a single model for both continuous and binary outcomes.193
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2.3 Validation methods for estimating prediction model performance194

The purpose of this study is to develop an approach to compare the performance195

of the above prediction models in the presence of measurement error. In validation196

we evaluate the fidelity of predicted states θ̂ to the true state θ by a function L(θ, θ̂).197

Here L is one of various performance metrics (e.g. MSE) and θ and θ̂ are restricted198

to the prediction sites (figure 1) and dates t in a test period which we choose to be199

the most recent beach season, 2019. The RF model was fit using data from a training200

period, i.e. prior to 2019; the NN model does not require any fitting. We used a single201

training and test set, known as hold-out validation (Schneider & Moore, 2000), for202

simplicity. All of the methods below can be easily adapted for cross-validation with203

multiple folds.204

Our challenge in validation is that we never observe θjt. In the literature, θjt is205

often assumed to be exactly equal to the mean measurement Ȳjt (Nevers & Whitman,206

2011; Francy, 2013; Shively et al., 2016; Lucius et al., 2019). Note that it is because207

these sites were in fact sampled that we can conduct this validation.208

However, this method does not account for measurement uncertainty and it is209

unclear what the consequences of this omission are regarding the overall performance210

assessment of a prediction model or the comparison of multiple models. We term this211

method of validation naive, and propose two additional methods: non-parametric and212

Bayesian. The validation methods are described below and summarized in figure 2.213

Note that there are two sources of variation accounting for the difference between214

the true FIB level θjt and an observation Yijt. The first is sampling variation due to215

the fact that a water sample is taken at a specific point in time and space (Whitman &216

Nevers, 2004). The second is measurement variation due to the qPCR technology used217

to analyze the sample (Whitman et al., 2010). As stated earlier, we define measurement218

error as the combination of these sampling and analysis variations.219

2.3.1 Naive validation not accounting for measurement error220

In naive validation we simply assume that the mean measurement is true: θjt =221

Ȳjt. Then we can evaluate L(θ, θ̂) as a point estimate of the performance (in contrast222

to non-parametric and Bayesian validation which estimate performance distributions).223

The use of naive validation is potentially flawed since the mean observation does not224

account for measurement error.225

When the metric L is MSE, we can explicitly analyze the effect of measurement
error. Assume a measurement error model

Yijt = θjt + εijt (3)

where εijt are independent identically distributed measurement errors, defined as the
sum of sampling and analysis errors. We do not assume a measurement error distri-
bution but assume the errors have fixed (finite) variance Var(εijt) = τ2 independent
of the measurement number i, site j, and date t. Then with E denoting expectation
over the random measurement errors ε we have

E|θ̂jt − Ȳjt|2 = E|θjt + ε̄jt − θ̂jt|2 (4)

= E[|θjt − θ̂jt|2 + |ε̄jt|2 − 2ε̄jt(θjt − θ̂jt)] (5)

= |θ̂jt − θjt|2 +
1

2
τ2 (6)

where we used the fact that the ε are independent of each other and both θ and θ̂ and226

there are two errors ε1jt, ε2jt so that E[ε̄2jt] = 1
2τ

2.227
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Ȳ
j
t

to
g
iv

e
a

p
o
in

t
es

ti
-

m
at

e
ε̂ j
t

=
θ̂ j
t
−
Ȳ
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This formula means that under these mild assumptions, the naive estimate of228

MSE overestimates the true MSE by a multiple of the measurement error variance.229

Thus, the greater the measurement error variance τ2, the larger the distortion of naive230

validation for the particular metric of MSE.231

However, since the distortion does not depend on which prediction model is being
evaluated (e.g. RF or NN), the naive validation will give an unbiased estimate of the
difference in performance, i.e.

E[MSE(Ȳ , θ̂rf)−MSE(Ȳ , θ̂nn)] = MSE(θ, θ̂rf)−MSE(θ, θ̂nn) (7)

2.3.2 Non-parametric validation accounting for measurement error232

Equation 4 shows that if we can estimate the measurement error τ then we can233

correct the bias of the naive estimate of MSE by subtracting it off. If we have more234

than one FIB measurement per beach-day in the data (as is the case in our data set),235

we can estimate τ using the standard sample variance estimator, and then average236

across beaches and days.237

Namely if Y1jt and Y2jt are the two observations with measurement error ε1jt
and ε2jt as in equation 3, we define the estimate

τ̂2
jt =

1

2
|Y1jt − Y2jt|2 (8)

which is unbiased because

E[τ̂2
jt] = E

[
1

2
|ε1jt − ε2jt|2

]
(9)

= τ2. (10)

Combining 4 and 9 we have the following estimate for the mean-squared error of
θ̂jt:

E[|θ̂jt − Ȳjt|2 −
1

2
τ̂2
jt] = |θ̂jt − θjt|2 (11)

We average across sites j and dates t to estimate MSE(θ̂, θ). We bootstrap this238

estimate across t to estimate the sampling distribution (unlike naive validation which239

gives a point estimate).240

We emphasize that this result does not make any distributional assumptions.241

We only assumed that the observations are equal to the true state plus independent242

measurement error (equation 3). However, this approach is limited to the specific error243

metric of MSE.244

2.3.3 Bayesian validation accounting for measurement error245

The approaches to validation presented above either: 1) assume the true FIB246

level θjt is equal to the mean of available observations (naive); or 2) indirectly estimate247

a specific error metric, MSE, under a specific sampling design (non-parametric). An248

alternative and more general approach is to use a Bayesian model to simulate the latent249

FIB state θ in validation. This is a form of Monte Carlo uncertainty propagation (ISO,250

2009).251

We start with a Bayesian model (details of which are in section 2.3.4) of the FIB252

states and measurements given covariates (θ, Y |X) fit to all the data (i.e. covariates253

X and measurements Y ). Then we sample θ at the prediction sites from the posterior254

distribution θ|Y,X conditioned on all the data. For convenience we write this posterior255

as θ̃ and samples indexed by s as θ̃(s). Then we can simply evaluate L(θ̃(s), θ̂). Here, as256

–9–
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in naive and non-parametric validation, θ̂ are RF or NN predictions at the prediction257

sites based on covariates at those sites and measurements at the sampled sites. By258

repeatedly sampling θ̃(s) and evaluating L(θ̃(s), θ̂) we sample the target distribution259

L(θ, θ̂)|Y,X.260

We emphasize that Y here includes all sites and times. That is, unlike the pre-261

diction models which only use observations from the sample sites during the testing262

period, the Bayesian simulations use measurements from the prediction sites them-263

selves (figure 1). In this way, the Bayesian model can support the validation of other264

prediction models, but should not be considered a prediction model itself.265

Strictly speaking, the Bayesian validation method assumes that the Bayesian266

validation model is correct. However, it takes into account uncertainty in both model267

parameters and in observations due to measurement error. Moreover, the method is268

useful under the weaker assumption that the Bayesian simulations of θ provide a more269

realistic representation of the true FIB levels against which to compare the prediction270

models (and infer the target distribution L(θ, θ̂)|Y,X). Additionally, the MSE error271

metric inferred under Bayesian validation can be validated against the non-parametric272

approach, which makes fewer assumptions.273

Yet compared to the non-parametric validation above, which only estimates MSE,274

Bayesian validation can be used to estimate any prediction performance metric. We275

consider several, including MSE, mean absolute error (MAE), and the area under the276

receiver operating curve (AUC) to evaluate predictions of the continuous FIB level.277

The remaining metrics (precision, sensitivity, specificity) use binary classifications that278

are obtained from continuous predictions using a threshold (see section 2.2.3). Preci-279

sion measures the proportion of exceedance predictions which are correct; sensitivity280

measures the proportion of exceedances which are correctly predicted; specificity mea-281

sures the proportion of non-exceedances which are correctly predicted. These latter282

metrics are particularly relevant to decision-making in recreational water quality man-283

agement, where binary decisions (e.g. site closure) are often based on water quality284

predictions exceeding a predetermined threshold.285

2.3.4 Bayesian validation model to facilitate Bayesian validation286

In order to implement Bayesian validation (section 2.3.3) we need a model of
θ, Y |X. Again, this model is not used for prediction, but rather uses all measurements
(including those at prediction sites) to simulate the true FIB level θ and thus support
validation of other prediction models that only use measurements at the sampling sites.
We use a linear regression (on the log scale) model with coefficients varying by site:

θjt = Xjtβj + ηjt (12)

where Xjt is a vector of K covariates (see section 2.2.2) and for each site j, βj is287

a vector of K regression coefficients, and ηjt are model structural errors (distinct288

from measurement errors modeled below) capturing variation in the true FIB level289

not explained by the linear regression. We use the same covariates as in the RF (see290

section 2.2.2) but add an intercept and parameterize the day of year as a B-spline with291

4 degrees of freedom (since this model is linear as opposed to the non-linear RF). Thus292

K = 15.293

On top of this regression we add three components. First we add a multivari-
ate normal error distribution with covariance matrix Σ to model correlation in the
structural errors across beaches on a given day t:

ηt ∼ Normal(0,Σ) (13)

This enables us to combine the measurements at other beaches with those at a given294

beach in estimating the bacteria level at that beach.295
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Second we add a multilevel structure on the coefficients, that is we have the
second-level regression:

βjk ∼ Normal(Zγk, σ
2
βk

) (14)

where Z is a J × L matrix of site-level covariates, γk is a vector of L second-level296

regression coefficients, and σβk
is the second-level residual standard deviation. Specif-297

ically we use L = 3 site level covariates including an intercept, breakwater length,298

and latitude (which is highly correlated with longitude, see figure 1). This second299

level regression allows the first level regression (equation 12) between FIB and the300

observation-level predictors (e.g. precipitation) to vary by site. Moreover, it allows301

us to partially pool information across sites and incorporate site-level information to302

more efficiently estimate the coefficients at a given beach (Stow et al., 2009; Cha et303

al., 2010). Incorporating site-level covariates also supports the (conditional) exchange-304

ability of the sites in the model (Gelman et al., 2013).305

The final component is an additive and normally distributed measurement error
with variance τ2 (Gronewold et al., 2009):

Yijt ∼ Normal(θjt, τ
2). (15)

Note that, unlike the RF model which is fit to beach-day mean levels Ȳjt, the Bayesian306

model is fit to the individual observations Yijt.307

We put the following uninformative priors on these parameters (Gelman et al.,
2013). Decomposing Σ into a correlation matrix Ω and a vector of coefficient scales σ

Σ = diag(σ) · Ω · diag(σ) (16)

we put a uniform prior over Ω and a Cauchy+(0, 1) prior on the components of σ.308

The second-level parameters γk and σ2
βk

are given uninformative Cauchy(0, 1) and309

Cauchy+(0, 1) priors, respectively. All priors are defined after standardizing all pre-310

dictors and the outcome.311

We fit the Bayesian validation model using the Markov Chain Monte Carlo soft-312

ware Stan (Carpenter et al., 2017), which uses No-U-Turn sampling (Hoffman & Gel-313

man, 2014), an extension of Hamiltonian Monte Carlo (Duane et al., 1987). We314

generated 4 chains with 1000 iterations each, saving the last 500 to produce S = 2000315

samples from the joint posterior parameter distribution. We assessed mixing using316

the criteria R̂ < 1.05 and neff/N > .001 where R̂ is the Gelman-Rubin convergence317

statistic and neff is the effective sample size (Gelman et al., 2013).318

With the uninformative prior on Σ we are making relatively weak assumptions319

about the covariance structure. This is possible in our application because of the320

relatively small number (19) of sites and the efficiency of Hamiltonian Monte Carlo.321

In applications with more sites, it may be useful to model the covariance in terms of322

the distance between sites j and k using a Gaussian process model or in terms of an323

adjacency matrix using a conditional autoregressive model (Gelfand et al., 2010).324

3 Results325

The Bayesian validation model was fit using 13,109 observations at the 19 beaches326

on 430 days between 2015 and 2019. The posterior distribution of measurement error327

variance τ2 had median 0.77 (95% CI, 0.74 to 0.8). This was 30% of the variance of328

daily means Ȳjt of 2.5. Complete results of the fit are included in the supplementary329

material.330

During the 2019 season 3,780 qPCR measurements were made over 102 days.331

The Bayesian posterior FIB level θ is displayed in figure 1. We restricted the test332
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period to those days with two samples at each of the 19 beaches. There were 67 such333

days.334

Using the geometric mean FIB level on each beach-day, the median FIB level was335

92 CE/mL and 4.9% of these beach-days were in exceedance of the 1000 CE threshold.336

The Bayesian estimate of the median level was 93 CE (95% CI, 88 to 99 CE) with337

3.9% (95% CI, 3.1% to 4.7%) of beach days exceeded the threshold.338

We first compare all three validation methods’ estimates of MSE since this is339

the only metric where the non-parametric method is applicable. Then we compare340

Bayesian and naive estimates of all prediction performance metrics.341

3.1 Mean squared error under all validation methods342

We start by examining the three validation methods on the metric where they343

can all be compared, namely MSE. Figure 3(A) presents these estimates. While naive344

validation gives point estimates, non-parametric and Bayesian validation give distri-345

butions. Moreover, the latter give joint distributions of MSE for the two prediction346

models and so yield distributions for the difference in MSE between the two prediction347

models.348

There are four findings here. First, we anticipated that naive validation would349

give a positively biased estimate of mean-squared error (4) and we see that it does350

give larger estimates than both non-parametric and Bayesian validation. For both RF351

and NN prediction models, the naive estimates of MSE lie above the 95% intervals352

estimated by non-parametric validation. Because non-parametric validation accounts353

for measurement error, we are inclined to trust its results and dismiss naive validation354

which is a priori flawed.355

Second, we find as expected (equation 7) that while naive validation overstates356

the MSE of both prediction models, the estimated difference between the prediction357

models agrees with the difference given by non-parametric validation.358

Third, we find remarkable agreement between non-parametric and Bayesian MSE359

estimates. Because non-parametric validation makes few assumptions, this agreement360

provides evidence to support our use of the Bayesian validation method to further361

explore the performance of prediction models and metrics for which we do not have a362

non-parametric method (discussed next).363

Fourth, the Bayesian method provides narrower uncertainty around its estimates364

than the non-parametric method. This may be explained by the fact that when esti-365

mating the squared error of a given prediction θ̂jt, the non-parametric method only366

uses the measurements Yijt at the site while the Bayesian method uses the additional367

information of covariates and measurements at other sites.368

3.2 All performance measures under naive and Bayesian validation369

We proceed to evaluate the full set of performance metrics using Bayesian and370

naive validation methods. We started by using Bayesian validation to estimate the371

expected sensitivity of the NN prediction model with a binary classification threshold372

of 1000 CE. The estimate was 95.6%, and to match this (section 2.2.3), a threshold of373

440 for the RF was calibrated. Estimates for all prediction performance metrics are374

shown in figure 3(B).375

According to both naive and Bayesian validation, RF outperforms NN in all376

metrics. However, the discrepancy between Bayesian and naive validation, first doc-377

umented for MSE in section 3.1 above, continues here across more metrics. Unlike378

MSE which was systematically overestimated (i.e. pessimistic) using naive validation,379
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(A) Mean squared error in all validation methods
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(B) All performance metrics in naive and Bayesian validation
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Figure 3: (A) Mean squared error of nearest neighbor and random forest predictions and
their difference estimated using naive, non-parametric, and Bayesian validation methods.
(B) Prediction performance estimates using naive and Bayesian validation. Solid dots and
intervals show median and 50% and 95% credible intervals, respectively, using simulation
to account for measurement error. Open squares show naive estimates without accounting
for measurement error. Abbreviations: mean squared error (MSE), mean absolute error
(MAE), area under receiver operating characteristic curve (AUC).
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other measures are variously pessimistic and optimistic, such as when naive validation380

estimates the precision of the RF to be 0.45 while the Bayesian point estimate is 0.36.381

However, as for MSE above, for each metric the bias of naive validation (relative382

to Bayesian validation) is the same for both RF and NN. Naive estimates of the383

difference in prediction performance benefit from this consistency in that the biases of384

the difference estimates are not larger than those of the absolute estimates. However,385

the discrepancy between naive and Bayesian validation of these estimated differences386

can still be quite large, as for example sensitivity where naive validation estimates RF387

to be an improvement of 0.27 while the Bayesian estimate is 0.37.388

The discrepancy between naive and Bayesian validation turns out to be greatest389

for MSE and MAE which measure performance of continuous FIB level predictions,390

and less for the others which measure binary prediction performance.391

While the Bayesian estimates of MSE and MAE are relatively precise, the es-392

timates of precision and sensitivity are very uncertain. This is explained by the fact393

that exceedances (positive events) form the denominator in the sensitivity metric and394

contribute to the numerator in precision. As a tail event defined by a sharp threshold,395

exceedance is difficult to measure and model precisely.396

These metrics as well as their uncertainty capture the efficacy of the predictions397

for binary management decision making such as issuing a swim advisory or closing a398

site. Sensitivity for example is the proportion of elevated FIB events that are correctly399

predicted (and hence acted on), which for the RF is 0.50 (95% CI, 0.33 to 0.69).400

Precision on the other hand is the proportion of predicted elevated FIB events (hence401

actions taken) that are correct, which for the RF is 0.36 (95% CI, 0.23 to 0.50).402

4 Conclusion403

The omission of measurement error, specifically in validation, is ubiquitous in404

the water resources literature (e.g. Dawson and Wilby (2001); Berenguer et al. (2005);405

Biondi et al. (2012); Lohani et al. (2012); Shortridge et al. (2016)), including prediction406

models for recreational water quality (e.g. Nevers and Whitman (2011); Francy (2013);407

Shively et al. (2016); Lucius et al. (2019)). In this technical note we examined the408

effect of this omission.409

For the specific prediction performance metric of MSE we showed that ignoring410

measurement error biases validation results (equation 4). The size of the bias depends411

on the size of the measurement error, which is very large in our context of recre-412

ational water quality. Next we contributed two new methods for model validation and413

inter-comparison that account for measurement error. The first was a non-parametric414

method making few assumptions but limited to the metric of MSE. The second was a415

Bayesian method that uses simulations from a parametric model to estimate any per-416

formance metric. We applied these methods to the evaluation of prediction models of417

FIB levels at beaches in Chicago and found that not accounting for measurement error418

significantly mis-estimated model performance across a range of metrics. Moreover it419

failed to quantify the uncertainty of prediction performance. Our non-parametric and420

Bayesian approaches overcame these issues.421

Accurate model skill assessments are important. These estimates are required422

by water quality managers to understand the utility of model predictions for decision-423

making. Bias in estimated performance metrics could skew how decision-makers inter-424

pret model predictions or select among competing models, as could the presentation425

(or lack thereof) of performance uncertainty. More generally, performance estimates426

and their uncertainty are essential to understanding the public health consequences of427

management decisions made on the basis of these models. Measures of model perfor-428
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mance are also used to inform decisions about additional sampling (if deemed necessary429

to improve performance), which could be costly. For example, if the city of Chicago430

were to conclude based on an assessment of model performance that they needed two431

samples per beach-day at the 19 beaches, rather than the current proposal which in-432

cludes roughly half the number of samples, the additional sampling cost would total433

about $57,000 per season assuming an estimated qPCR analysis cost of $30 per sample434

(Griffith & Weisberg, 2011).435

Both the non-parametric and Bayesian approaches to validation proposed in this436

study help overcome limitations of a naive approach. However, the Bayesian approach437

to validation is more flexible in its ability to compare models across a variety of metrics,438

some of which might be particularly relevant to decision-making (e.g., predictions of439

exceedances over a water quality threshold).440

Additional developments could improve the Bayesian model. Temporal auto-441

correlation was considered but initial testing (not shown) confirmed previous findings442

that system dynamics are too fast (Dorevitch et al., 2017). The regression coefficients443

βjk could be modeled as correlated using a multivariate normal distribution. A more444

sophisticated approach to spatial correlation is also possible, e.g. using an adjacency445

matrix within a conditional autoregressive model (Gelfand et al., 2010). There is446

some evidence suggesting that measurement error may vary with the bacteria level447

(Whitman et al., 2010), which could be modeled using a heteroskedastistic measure-448

ment error. While the measurements in our dataset are only at a single location and449

time for each beach and date, it has been shown that there is substantial variation450

spatially within each beach and temporally within each day (Whitman & Nevers, 2004;451

Boehm, 2007). With the relevant data, our model could be extended to these finer452

scales. In applications where predictions models produce probabilistic forecasts, the453

Bayesian validation method could be further developed with performance measures454

that compare the forecast distribution with the Bayesian posterior. These efforts are455

left for future work. Importantly though, even if the Bayesian model is not the best456

prediction model of FIB levels (as compared to, say, a machine learning model), it457

enables us to incorporate all available information into simulations of uncertain bac-458

teria concentrations. This study shows how those simulations can be used to validate459

prediction models for more realistic assessments of skill compared to a naive approach.460
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