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ABSTRACT
The improper treatment and disposal of hazardous waste
can have disastrous effects on the environment and human
health. The Resource Conservation and Recovery Act (RCRA)
governs hazardous waste management in the United States.
To enforce its regulations, the New York State Department
of Environmental Conservation (NYSDEC) inspects facili-
ties that handle hazardous materials. However, due to re-
source constraints, not all facilities can be inspected each
year. We worked with NYSDEC to build predictive mod-
els that use reporting, monitoring, and enforcement data to
prioritize inspection resources.

The past selection of inspection sites results in non-random
missing labels in both training and testing. We initially
built models that ignore this selection bias. Next we mod-
eled the selection process and incorporated it into two kinds
of models: first, we reinforced that process; second, we used
reweighting to try to correct its bias. Each of these three ap-
proaches produces qualitatively different predictions, though
we estimate through cross-validation that each of them can
significantly increase the proportion of future inspections
finding violations. We propose a novel field trial design for
NYSDEC to test, compare, and select from among these
models.

1. INTRODUCTION
The Resource Conservation and Recovery Act (RCRA)

was enacted in 1976, giving environmental agencies the au-
thority to regulate hazardous waste “from cradle to grave.”
RCRA defines what constitutes hazardous waste and out-
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lines explicit requirements for waste management. The act
is intended is to minimize negative environmental impacts
by reducing the total amount of waste produced and pre-
venting spills through responsible management practices,
rather than simply managing waste disposal at the end of
the pipeline [3]. Over 130 million tons of hazardous waste
were generated in the United States in 2013, and in the fol-
lowing year there were 28,000 spills, leading to 1182 deaths
and nearly $85 million in property damage [2].

The New York State Department of Environmental Con-
servation (NYSDEC) uses a compliance inspection program
to enforce RCRA regulations in New York State. It is criti-
cal to do so in order to prevent disasters such as the Kaltech
Industries explosion in 2002. Kaltech Industries Group was
a commercial sign manufacturer located in the basement of
a building in downtown Manhattan which used hazardous
chemicals for etching and cleaning. Due to improper train-
ing, labeling, and handling, incompatible chemicals were
mixed and resulted in an explosion which injured thirty-six
people, four of whom were admitted into intensive care [16].
There was extensive damage to the building including blow
out of the elevator shaft, collapsing walls, and destruction
of the center stairwell [6]. One of the causes was found to
be that Kaltech had not been inspected in its last ten years
of operation.

In this paper, we describe our work with NYSDEC to more
effectively allocate inspection resources by creating predic-
tive models that can identify facilities with a high likelihood
of violating environmental regulations and, in turn, to better
enforce RCRA, and reduce environmental damage.

The paper is structured as follows: In section 2 we describe
how NYSDEC currently targets inspections and identify op-
portunities for a data-driven approach to the inspection tar-
geting process. In section 3, we summarize the available data
sources. In section 4, we describe our evaluation method-
ology in the presence of missing labels. In section 5, we
describe the process we used to aggregate information and
generate spatio-temporal features for all of our models. In
section 6, we identify three distinct approaches to modeling
in the presence of missing labels and our process and results
for building models from each class and comparing them. In
section 7, we present the design of a field trial for NYSDEC
to test and select from among these models. Finally, section
8 identifies opportunities for future work.



2. APPROACHES TO ENFORCEMENT

2.1 Current Approach
The bulk of environmental monitoring and enforcement

resources in the United States are allocated to activities un-
der the Clean Air Act (CAA), Clean Water Act (CAA), and
RCRA. Self-reported pollution or waste management data is
the primary source of compliance monitoring information on
large facilities in these programs, but regulator inspections
are used to confirm the accuracy of self-reported measures,
and are often the only source of compliance information for
smaller facilities [17].

Although legislation surrounding environmental policy is
largely determined at the federal level, monitoring and en-
forcement responsibility in New York state falls primarily
on NYSDEC, which conducts about one thousand RCRA
inspections each year [7].

RCRA inspections can be triggered by citizen complaints,
accidents (“for cause” inspections), or for administrative rea-
sons (“neutral” inspections) [17]. Of the latter category,
some inspections are mandatory. For example, facilities
deemed significant non-compliers (SNCs) are periodically in-
spected until they return to compliance. Other inspections
are more flexible: transportation, storage and disposal fa-
cilities (TSDFs) and large quantity generators (LQGs) are
required to be inspected at least every two and five years,
respectively. The remaining inspections are allotted at the
region’s discretion, usually according to national or regional
areas of focus (e.g. facilities in the metal processing indus-
try, concentrated animal feeding operations), geographical
convenience (close to a scheduled inspection), or random se-
lection.

The hit rate is defined as the proportion of inspections
conducted that find a violation. In 2015, the overall NYS-
DEC hit rate was about 40%.

2.2 Our Approach
With guidance from NYSDEC, our work focuses on pri-

oritizing the inspection of large quantity generators (LQGs)
which have not been recently inspected. Below facilities will
refer only to these facilities.

We frame the task as a binary classification problem: what
is the likelihood that a given facility, if inspected in the
next year, will identify a violation? Identifying more vi-
olations makes the inspection process more efficient, that
is NYSDEC can find the same number of violations with-
out conducting as many inspections, or find more violations
without increasing the number of inspections. The model
also provides a ranking over all facilities, meaning that if
NYSDEC is able to conduct more inspections, it can do so
dynamically and effectively. This approach incorporates in-
formation across regulatory programs to identify previously
unidentifiable patterns of behavior associated with violation
under RCRA statutes. The source code for our data and
modeling pipeline available to the public.[8]

3. DATA SOURCES
The EPA collects and maintains a wealth of data across all

of its enforcement programs, and RCRA inspectors routinely
use the RCRAInfo database to identify likely violators based
on compliance history on a case-by-case basis.

However, many RCRA facilities fall under at least one
additional EPA regulatory program, and it is prohibitively

difficult for inspectors to synthesize the information across
all programs and all facilities. Furthermore, information is
not always shared between regions: inspector knowledge and
heuristics are not easily standardized across regions, and
novel findings in one region are not automatically distributed
to or put into practice in other regions.

The EPA’s Office of Enforcement and Compliance As-
surance (OECA) maintains monitoring, inspection, and en-
forcement data across all of its regulatory programs. It is
common for a facility to be subject to regulation under mul-
tiple programs. Using the EPA’s central Facility Registry
(FRS) database, we linked these various sources, the most
important of which are listed below.

Note that besides NYSDEC annual reports, all data is
publicly available.

3.1 RCRAInfo
Characterizes facility status, regulated activities, and com-

pliance histories on the generation of hazardous waste from
large quantity generators and on waste management prac-
tices from treatment, storage, and disposal facilities. RCRAInfo
contains data since 1984 on 110,000 facilities in the state
of New York, of which about 32,000 are currently active.
About 15,000 New York facilities have been inspection dur-
ing this time, totaling approximately 68,000 inspections.

3.2 Biennial Reporting System (BRS)
Information regarding the generation, management, and

final disposal of hazardous wastes regulated under RCRA for
odd numbered years. It includes over 10,000 unique RCRA
facilities that shipped waste between 2003 and 2013, com-
prising over 200,000 total shipment activities.

3.3 Integrated Compliance Information Sys-
tem (ICIS)

Incorporates federal enforcement and compliance (FE&C)
case data on 10,000 New York RCRA facilities. Contains
data related to Clean Air Act and Clean Water Act inspec-
tions such as discharge permits and monitoring reports.

3.4 NYSDEC Waste Manifests
Waste manifest data are the main supplemental dataset

specific to New York State. These manifests are a part of
New York State’s system for tracking hazardous waste ship-
ments to or from all generating and transporting facilities
in the state. When hazardous waste is transported, stored,
treated or disposed of, each agent that ships or receives data
creates a manifest or receipt of this waste. These manifests
include identifying data on the facilities, along with detailed
data on the type and amount of waste shipped. Waste man-
ifests are tracked via receipts from generator to transporter
to disposal and at each step, there is tracking and checking
of the waste and quantity, thereby monitoring waste from
cradle-to-grave. Since 1990, there are manifests for over 6
million shipments generated by 95,000 unique facilities.

3.5 NYSDEC Annual Reports
As part of RCRA regulations, a biennial report is issued

which summarizes (in greater detail) the information col-
lected in the above two sources for large quantity generators
(LQGs). New York State issues these reports on an annual
basis, which we use to extract more detailed feature data on
this subset of facilities. Since 2006, there are 20,000 annual



reports available for 13,000 unique facilities.

4. EVALUATION METHODOLOGY

4.1 Temporal Cross-Validation
To evaluate our models, we use a cross-validation strategy

that emulates the way in which our models would be de-
ployed by NYSDEC. Since regions generate inspection lists
at the beginning of each fiscal year, the cross validation is
defined by a date t0 and a training window dt. Facilities
inspected within the dt window before t0 are included in the
training set. Therefore the training set can include multiple
observations for a given facility, but at most one observation
per facility per year.

The test set consists of all facilities inspected in the year
following t0. We score all facilities that were active at time
t0. Crucially, we only have outcomes for those facilities
which were actually inspected.

4.2 Metrics
The model ranks all facilities eligible for inspection in a

given year, and we can calculate the usual metrics such as
precision, recall, and AUC by restricting to the subset of
the test set for which we have labels. But those are not
the metrics of interest for this problem. This is because
NYSDEC inspects about 150 (or 5%) of facilities each year.

Thus in each test year we focus our attention on how a
given model performs in the top k, that is the k examples
predicted to be most at risk by that model. Generally we
will restrict k to be less than or equal to the total number
of labeled examples, i.e. inspected facilities, in that test set.

The precision in the top k is the proportion of labeled
(inspected) examples in that set which are positive (viola-
tors). The greater the precision at the top and the more
steeply sloped the precision curve, the better the model is
at prioritizing likely violators.

We also scale precision on a given test set by dividing by
the baseline hit rate that NYSDEC actually achieved in a
given year. This allows us to aggregate precisions across test
sets. This metric is called lift.

Thus another important metric is the count in the top k
which we define as the number of labeled examples in the top
k. Note that by definition count(k) is at most k. Because
of our missing labels, two models with the same precision in
the top k can have differing counts. By definition

precision(k) =
count+(k)

count(k)

where count+(k) is the number of positive labeled examples
in the top k. So for a fixed precision, the higher the count
the more confident we are in that precision estimate.

We can formalize this to provide bounds on the estimate
of precision in two ways. First, we can provide hard lower
and upper bounds by assuming that the unlabeled examples
are all negative or all positive, respectively. That is,

count+(k)

count(k)
≤ precision(k) ≤ count(k)− count−(k)

count(k).

These bounds, however, are not very informative so we
prefer statistical bounds. Under the assumption that the
labels in the top k follow a Bernoulli distribution, we can
use a binomial proportion confidence interval. We prefer the

Source Feature
RCRA Time Since First Inspection/Violation

Time Since Last Inspection/Violation
Mean Time to Return to Compliance
Maximum Time to Return to Compliance
Number of Times Reported as SQG/LQG
Number of Times Reported as Transporter

Manifests Number of Waste Manifests Submitted
Average Quantity of Waste Generated
Minimum Quantity of Waste Generated
Maximum Quantity of Waste Generated
Types of Waste Generated

ICIS Number of Enforcements
Minimum Monetary Penalty Assessed
Maximum Monetary Penalty Assessed
Mean Monetary Penalty Assessed

Figure 1: Examples of features generated from various
sources. These can be calculated at any spatio-temporal
resolution.

Clopper-Pearson (exact) bounds because of the relatively
small sample sizes in our context [11].

5. FEATURE GENERATION
Facility violations are a spatio-temporal phenomenon, so

naturally the features in our model are also spatio-temporal.
The only characteristic of a facility that is static in time is
its location. Most quantities of interest (e.g. the type and
quantity of waste that a facility handles, how many times it
has been inspected, whether it has been found in violation of
RCRA regulations) can and do change over time. Therefore
the majority of the features generated must be associated
with both a location and a point in time.

Our approach to spatio-temporal feature generation can
be defined in the following general terms. All of the data
consists of events, meaning that each datum occurs at a
point in time and space.1 Thus given a time period, de-
fined by a date (e.g. January 1st, 2016) and delta (e.g. 5
years, or all time), and a spatial level (e.g. facility, zip code),
we can gather all observations that fall within that spatio-
temporal window and apply an aggregation function (e.g.
count, mean, maximum).

For example, we calculated the maximum time a facility
had taken to return to compliance within the past year; the
number of inspections conducted in a state over the past
5 years, and what proportion of those led to a violation;
and the time since a facility was first inspected. For more
examples see figure 1.

6. THREE TYPES OF MODELS
The naive approach to predicting violators is to train mod-

els on labeled (inspected) facilities. Such models are techni-
cally learning the likelihood that a facility is found in viola-
tion conditional on it being inspected. Denoting the random
events of violation and inspection as V and I, respectively,

1Some data is more complex. For example, enforcement
information for an inspection may not be received until well
after the inspection occurs. We decompose such data into
multiple events.



these models are estimating P (V |I).2

However, if the goal of inspection targeting is to maximize
the number finding violations, then the quantity of interest
for each facility is of course the unconditional probability
P (V ). As described above, the historical targeting of facili-
ties for inspection by experts was was not at all (uniformly)
random so we have

P (V |I) 6= P (V )

in general. This discrepancy between modeling P (V |I) and
P (V ) is evident in the context of our validation methodol-
ogy.

We only have labels for about 2.5% of facilities in the
universe in a given year. If our model performs well, then we
would expect to have many labeled examples at the top only
if the historical inspection targeting process did similarly
well and selected similar facilities.

We should be wary wary of scoring the entire population
of facilities using the P (V |I) model: this model was only
trained on inspected facilities. Since the facilities were not
selected for inspections uniformly randomly, we are applying
the model outside of the population of the training set.

There are three ways to deal with this issue. The most
direct way is to simply collect additional labels for facilities
that have low historic P (I). However, this process is time-
consuming and expensive, so we augment it with two further
modeling strategies that work in opposite directions.

The first is to model the probability of violation and in-
spection, P (V &I), which, given the contribution of the prob-
ability of inspection, will be reinforcing the historical target-
ing process, albeit identifying new facilities. The second is
to try to correct for the statistical bias of the historical tar-
geting process by modeling the desired P (V ), allowing us to
target the facilities with the highest probability of violation.

The remainder of this section is organized as follows: 6.1
presents our model selection process in-depth for P (V |I)
models; sections 6.2 and 6.3 explain the theory and practice
of the P (V &I) and P (V ) models; 6.4 describes a comparison
of the best of each of these three types of models.

6.1 Conditional Probability of Violation
We trained a variety of standard binary classification mod-

els including regularized logistic regression, SVM and ran-
dom forest and performed a grid search over both model
hyper-parameters and feature generation parameters.

Figure 2 shows the precision for the best model of each
class in the year 2015. We found the different model algo-
rithms to perform comparably with no single model domi-
nating in all cross-validation years. This could be because
we have incorporated much of the complexity of the task in
our features and all models are able to take advantage of
them. See figure 3 for a comparison across years. On av-
erage our lift in the top (equal to the approximate number
of inspections performed by NYSDEC) was about 1.5x or a
50% improvement over the baseline.

We also looked at the recall in the top for each of these
models. Gradient boosted trees and logistic regression had
somewhat better recall than SVM and random forest. See
figure 4.

2Models like random forest do not explicitly estimate prob-
abilities unless they are calibrated so we use this language
and notation with some caution.

Figure 2: Precision curves at the top in 2015 for the best
models of each algorithm.

Figure 3: Precision on the top labeled examples by model
algorithm by year. All models perform similarly with lift
averaging about 1.5x.



Figure 4: Recall on the top labeled examples by model al-
gorithm by year.

When varying the number of training years we found steady
improvements in performance up until about 8 years of data,
after which performance plateaued. See 5. Note that in all
of these models the spatiotemporal aggregation features con-
tain information summarizing many more (in fact all) years
of data for those facilities in the training set.

To evaluate the usefulness of the features in the model
we looked at logistic regression coefficients, SVM margins,
and random forest feature importance. See figure 6 for a list
of the highest ranked features. The most surprising feature
that surfaced as a highly predictive was a binary feature
indicating whether the mailing address matched the physical
address of a facility. Through conversations with inspectors,
this seems to be indicative of large companies (with off-site
headquarters), which tend to have more robust compliance
and legal practices in place.

To measure the usefulness of each of the datasources men-
tioned in section 3, we ran models with just one of those
data sources at a time. We found that, individually, the
RCRAInfo investigations and NYSDEC waste manifests data
are the most important. We also found that excluding the
NYSDEC annual reports had no effect, so that the model
effectively only uses public data.

6.2 Probability of violation and inspection
Unlike violation (V ), the compound event of violation and

inspection (V &I) is observed for each facility each year.
Note that negative examples under this model are facili-
ties which were either inspected and not found in violation
or not inspected. Thus there is no sample selection bias in
training this model. However, since about 5% of facilities are
inspected each year and of those only about half find viola-
tions,are imbalanced with only about 2.5% positive labels in
each training set. Consequently, we use a balanced random
forest, i.e. a random forest whose bootstrap samples con-
tain equal numbers of examples from each class [14]. Three
years of training data are sufficient for this model, perhaps
because there are significantly more examples (about 3000)
per year.

A model trained in this way performs well. Note, however,

Figure 5: Precision and recall in the top for random forests
with different numbers of training years, averaged over pre-
diction years. Performance increases until about five train-
ing years.

Feature
Time since first and last handler registration
Total amount of waste shipped
Variance in amount of waste shipped over time
Proportion of inspections finding violations
NAICS industry
Time since last violation
Whether or not facility and mailing addresses are co-located
Total number of investigations

Figure 6: The most important features in a random forest
model.

Figure 7: The average precision in the top for random forest
models using features from only one dataset.



Type P (V |I) P (V &I) P (V &I)
direct factored

Precision .709 .585 .626
Recall .331 .461 .464

Figure 8: Precision and recall at the top averaged over years
for three random forest models. The P (V &I) models have
significantly better recall at the top than the P (V |I) model
at the expense of precision. The factored model P (V |I) ×
P (I) improves in precision over directly fitting P (V &I).

Figure 9: Positive recall counts.

that

P (V &I) = P (V |I)× P (I).

Thus another way of estimating P (V &I) is by factoring
into two models: P (I), and P (V |I) which we already es-
timated in section 6.1. From another perspective, we are
reordering the predictions of the P (V |I) model according
to their probability of inspection. We can also think about
P (I) as the degree to which we believe that our P (V |I)
model is applicable to any given facility.

We find that this product model is a significant improve-
ment over the direct estimate in terms of precision while
maintaining the same advantage over the original P (V |I)
model in terms of precision. See figure 8 for a summary.
Below we will refer to this product model as the P (V &I)
model.

We can decompose the labeled examples at the top into
positive and plot recall curves for each class. See figure 9 for
these curves. We see that P (V &I) significantly outperforms
P (V |I) in positive recall, with decrease in negative recall.
Intuitively, multiplying by the probability of inspection has
elevated positive examples into the top, without significantly
changing the distribution of negative examples.

Inspectors at NYSDEC remarked that the P (V &I) pre-
dictions were more sensible than those of P (V |I). This is
not surprising since the former is designed to learn from their
own targeting methodology.

6.3 Probability of Violation
The fact that we only have labels for a small, non-randomly

P (V |I) P (V &I) P (V )
P (V |I) 1 .494 .860
P (V &I) 1 .464
P (V ) 1

Figure 10: Similarity at the top between model types, aver-
aged over years.

Type P (V |I) P (V &I) P (V )
Precision .709 .626 .675
Recall .331 .464 .313

Figure 11: Precision and recall at the top for each model
type, averaged over years.

sampled subset of the population of interest is an instance
of sample selection bias. The literature on sample selection
bias ”correction” theory starts with the work of Heckman
who developed a method of estimating and correcting for
the bias in the context of linear models and under assump-
tions of normality [9].

Cortes, et al. present a simple and general sample bias
correction framework [10]. Under the assumption that every
example has a positive probability of being included in the
sample, we can reweight the sampled examples to approx-
imate the true distribution of examples. That is, assume
P (I) > 0 over the population, where I is the probability of
being included in the sample. In this case, learning a model
from the entire population is equivalent, in expectation, to
learning from a sample after reweighting each example x by
P (x)/P (x|I). By Bayes’ rule this is inversely proportional
to P (I), which we have already modeled in section 6.2.

We implemented this reweighting by training a regular-
ized logistic regression for P (I). We did this because lo-
gistic regression naturally estimates probabilities, unlike the
random forest P (I) we trained in section 6.2 above. Next
we inverted these probabilities and provided them as sam-
ple weights to the same random forest that we selected for
P (V |I) in section 6.1. See the next section for a comparison
to previous models.

6.4 Inter-model Comparison
For a given prediction year and two models, we define the

similarity k to be the Jacard similarity between the top k
sets of the models:

similarity(k;M1,M2) =
#(top(k;M1) ∩ top(k;M2))

#(top(k;M1) ∪ top(k;M2))

where top(k;M) is the set of facilities ranked in the top k by
model M . The similarity between two models lies between
0 (no facilities in common) and 1 (all facilities in common).

Figure 10 shows the similarity between the three model
types we have developed, averaged over years. While the
reweighted P (V ) model is quite similar to the original P (V |I)
model, the P (V &I) model is quite different from either.

In terms of precision and recall, we find that the P (V )
model suffers slightly compared to the P (V |I) model. See
figure 11 for raw numbers. Another perspective is to in-
corporate the number of missing labels in the top into the
precision using binomial proportion confidence intervals de-
scribed in section 4.2. Then compared to P (V |I), P (V )
has a slightly lower precision and wider confidence interval



Figure 12: Precision of each model type pooled across all
years. Error bars are 95% binomial proportion Clopper-
Pearson confidence intervals as described in section 4.2.

Figure 13: For each model type and each feature, the table
contains the ratio of the mean of that feature on the top set
for that model, and the mean in the population.

while P (V &I) has a substantially lower precision but nar-
rower confidence interval. See figure 12. Figure 13 shows
crosstabs for select features between the top sets of each
model. These features were selected by fitting a multiclass
decision tree with examples equal to the union of top sets
across the three model types across all years. The outcome
was the subset of model types for which the example appears
in the top predictions.

We found that, compared to the population, the facili-
ties selected by the P (V &I) model were more likely: to
have higher maximum waste generation weight; have more
annual reports recorded; belong to NAICS industry 1 (agri-
culture, forestry, fishing and hunting); have received their
first inspection earlier; and to have ever been subject to an
enforcement. As mentioned above, the facilities selected by
P (V |I) and P (V ) were similar; one of the few features that
discerns them is that P (V ) selections are even less likely to
have had an enforcement.

These observations support the intuition that the P (V )
model is selecting larger and more typical facilities for in-
vestigation, while the P (V ) model is selecting more novel
facilities.

7. IMPLEMENTATION
We are working with NYSDEC on a preliminary valida-

tion of these methods. In the long term, a rigorous validation
of our models requires a statistical framework for comparing
methods for targeting inspections.

7.1 Field Trials for Targeted Inspections
By a targeting method we mean a function which, given a

list X of entities (facilities) and a number k of inspections
to perform, selects a subset of X of size k. Let y(X ′) denote
the number of violations in a subset X ′ of X.

Let Ek and Mk denote the lists of k facilities chosen by an
expert and a model (or two different models), respectively.
Then we wish to know whether there are more violations on
the model list than on the expert list. That is, we will test
the alternative hypothesis

H1 : y(Mk) > y(Ek) (1)

against the null hypothesis

H0 : y(Mk) = y(Ek). (2)

If we were able to perform (up to) 2k inspections instead
of k inspections, we could inspect the union of the two lists
and directly compare y(Ek) and y(Mk). However, those
resources are not available, so we need to test the hypothesis
statistically.

It is tempting to test the hypothesis using a randomized
controlled trial design in which we randomly partition X
into equal halves X ′ and X ′′, apply one targeting method
to each half, and then perform k/2 inspections from each
half, thus observing Ek/2(X ′) and Mk(X ′′).

However, in this context the unit to which the treatment
(targeting method) is applied is all facilities (X ′ or X ′′)
rather than a single facility, making the sample size 1 in-
stead of N/2. Furthermore, the quantities observed in this
here would be y(Ek/2(X ′)) and y(Mk/2(X ′′)), which can be
shown to be biased estimators of the quantities of interest
y(Ek(X)) and y(Mk(X)), respectively.

To remedy these issues we will use the following study
design which can be shown to provide an unbiased test of
the above hypothesis.

1. Experts select Ek from X, model selects Mk from X.

2. Randomly sample k facilities from (Ek ∪Mk) and in-
spect them.

3. Conduct the hypothesis test comparing the means (pro-
portions of violators) of the two groups.

We plan to conduct a field trial following this design dur-
ing the NYSDEC 2017 fiscal year.

8. FUTURE WORK
The outcome modeled in this work has been restricted to

whether a violation occurred. As noted in section 2, not
all violations are equally severe. Regulators are more inter-
ested in identifying violations that will lead to a formal civil
or criminal enforcement than those that lead to an informal
administrative enforcement. We have done some prelimi-
nary modeling of this outcome; however, it is significantly
more complex in two important ways. First, the outcome is
not known at the time of inspection. The average time be-
tween inspection and a formal enforcement action outcome
is over one year, with some taking over ten years, and no
maximum time window after which a label is guaranteed.



Second, the baseline of formal enforcement actions among
all inspections is 5% so the classes are significantly imbal-
anced. We plan to explore this outcome as well as more
specific violation types in future work.

Another direction for future research is a better under-
standing of the relationship between the immediate goal of
maximizing the number of inspections finding violations and
the comprehensive goal of minimizing violations at large–
especially those that are the most damaging to human and
environmental health. Inspections of a facility, and enforce-
ment actions against it, serve in the short term to prevent
that facility from violating, but in the long term the inspec-
tions process aims to deter all facilities, including the unin-
spected, from violating. A better understanding of these
two effects is essential to achieving the broader goals of the
hazardous waste management [15].

The setting in which there is a large population of exam-
ples but only a small number of labels has connections to
other areas of research. We are exploring techniques from
semi-supervised learning to improve our model by using both
labeled and unlabeled data [12]. However, in addition to im-
proving the classifier, we have the further goal of improving
our estimates of its performance in the top. Another related
area is active learning[13], which optimizes queries for labels
on unlabeled data. In our setting, this means inspecting a
facility not necessarily because it has a high likelihood of vi-
olation (positive label) but because it would be informative
to improve the model.

9. CONCLUSION
We used insights from a variety of data sources to in-

form an innovative, data-driven approach to targeting in-
spections of facilities that generate, transport, and dispose
of hazardous waste. Our approach has the potential to both
increase the number of inspections finding violations and
address the statistical biases present with data gathered
through expert targeting. We have initiated a framework
for evaluating machine learning models in the presence of
missing labels, which is by definition commonplace in re-
source allocation problems. We anticipate that this project
can serve as a prototype for predictive analytics projects in
other regulatory programs.
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