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A B S T R A C T   

Estimating soil organic carbon (SOC) stocks in agricultural fields is essential for environmental and agronomic 
research, management, and policy. Stratified sampling is a classic strategy for estimating mean soil properties, 
and has recently been codified in SOC monitoring protocols. However, for the specific task of estimating the SOC 
stock of an agricultural field, concrete guidance is needed for which covariates to stratify on and how much 
stratification can improve estimation efficiency. It is also unknown how stratified sampling of SOC stocks 
compares to modern alternatives, notably doubly balanced sampling. To address these gaps, we collected high- 
density (average of 7 samples ha− 1) and deep (average of 75 cm) measurements of SOC stocks at eight com
mercial fields under maize-soybean production in two US Midwestern states. We combined these measurements 
with a Bayesian geostatistical model to evaluate stratified and balanced sampling strategies that use a set of 
readily-available geographic, topographic, spectroscopic, and soil survey data. We examined the number of 
samples needed to achieve a given level of SOC stock estimation accuracy. While stratified sampling using these 
variables enables an average sample size reduction of 17% (95% CI, 11% to 23%) compared to simple random 
sampling, doubly balanced sampling is consistently more efficient, reducing sample sizes by 32% (95% CI, 25% 
to 37%). The data most important to these efficiency gains are a remotely-sensed SOC index, SSURGO estimates 
of SOC stocks, and the topographic wetness index. We conclude that in order to meet the urgent challenge of 
climate change, SOC stocks in agricultural fields could be more efficiently estimated by taking advantage of this 
readily-available data, especially with doubly balanced sampling.   

1. Introduction 

Soil organic carbon (SOC) has been greatly diminished by agricul
tural activities, contributing to climate forcing (Sanderman et al., 2017). 
In order to monitor SOC stocks under agricultural land use and manage 
stock increases to offset further anthropogenic climate forcing, accurate 

measurement of SOC stocks at the field scale is essential. In particular, 
estimating SOC stocks at the scale of an agricultural field, the scalar unit 
at which management practices are conducted, is needed to develop 
sustainable management practices and support carbon credits. 

However, accurately estimating the total SOC stock of an agricultural 
field is at present resource and cost intensive (Smith et al., 2020; 
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Oldfield, 2022), hindering or even precluding scalability of SOC stock 
estimation. The relatively high spatial variability of SOC stocks neces
sitates a large number of soil samples across the field to precisely esti
mate the total stock (Garten and Wullschleger, 1999; McBratney and 
Pringle, 1999). Moreover, there is evidence that subsurface depths (e.g., 
> 30 cm) contain a major portion of total SOC stocks in soils under 
agricultural use (Kravchenko and Robertson, 2011; Olson and Al-Kaisi, 
2015), requiring deep soil sampling that decreases throughput and is 
labor-intensive (e.g., Tautges et al., 2019). Bulk density from intact cores 
and lab analyses of the resulting soil samples by dry combustion for SOC 
concentration add further cost and labor to the SOC stock measurement 
process. Improvements in SOC stock estimation can be realized by 
increasing the accuracy of the estimate and/or by reducing the cost of 
the estimate. This is because SOC stock estimation error is a decreasing 
function of the sample size, i.e. the number of cores or pits at which soils 
are sampled and measurements are made. 

To improve SOC stock estimation, there are broadly two potential 
avenues: sampling and modeling. Both of these avenues can take 
advantage of auxiliary information, but incorporate it at different stages 
of the estimation process. For example, remote sensing imagery may be 
used to inform SOC stock measurement locations, such as by stratified 
sampling (Potash et al., 2022), or the imagery could be used to predict 
SOC stocks themselves, such as modeling its relationship to measure
ments taken at similar fields (Hbirkou, 2012). Some approaches, such as 
in situ spectroscopy, can make use of both modeling and sampling (Smith 
et al., 2020). 

In this article, we are concerned with the sampling strategy avenue 
for improving SOC stock estimation. Stratified sampling is a classical 
approach which uses auxiliary information to partition a field into strata 
and apply simple random sampling to each one. Stratified sampling has 
recently been codified in carbon crediting protocols (Oldfield et al., 
2021), but for the specific task of estimating SOC stocks in agricultural 
fields, concrete quantitative guidance is lacking on which auxiliary in
formation to use and what benefits can be expected. Moreover, it is 
unknown how stratification performs for SOC stock estimation 
compared to modern alternatives, notably balanced sampling, which 
also leverages auxiliary information to potentially improve estimation 
efficiency but does not require constructing a stratification (Deville and 
Tillé, 2004). 

A major reason for this gap in knowledge about the performance of 
sampling strategies for SOC stock estimation is that, similar to con
ducting SOC stock assessments, evaluations of sampling strategies are 
themselves also resource intensive. Evaluating sampling strategies in a 
field traditionally requires implementing the strategies to estimate the 
SOC stock of the field. As a result, there are only a handful of studies 
evaluating SOC stock sampling strategies. Even then, these studies do 
not quantify the uncertainty of the evaluation, which may be large 
enough to qualitatively affect the interpretation of the results (Potash 
et al., 2022). 

The present study addresses challenges to evaluating SOC stock 
sampling strategies in two ways: a rich evaluation dataset and a 
Bayesian evaluation methodology. Our dataset consists of high-density 
(an average of 7 samples ha− 1) and deep (to an average depth of 75 
cm) measurements of SOC stocks at eight commercial fields across four 
states of the US Midwest, a globally important region of maize (Zea mays 
L.) and soybean (Glycine max L.) production and a major industry focus 
area for SOC sequestration. The Bayesian methodology of Potash et al. 
(2022) allows us to combine this unique dataset with a model to map 
SOC stocks to evaluate a variety of sampling strategies without having to 
implement each one in the field. Moreover, unlike a traditional standard 
error estimate, the Bayesian methodology provides quantification of 
uncertainty to better enable comparison of sampling strategies. 
Leveraging this dataset and methodology, we provide a comprehensive 
evaluation of stratified and balanced sampling strategies for estimating 
SOC stocks at the field scale, assessing whether these strategies can 
reliably improve estimation efficiency compared to simple random 

sampling (SRS). In doing so, we contribute much-needed quantitative 
evidence to support SOC stock sampling strategy selection. Moreover, 
we share our dataset to maximize the scientific impact of our work. 
Finally, we discuss the implications for sampling strategy selection for 
SOC research and monitoring programs. 

2. Materials and methods 

2.1. Data 

We used field-scale data on SOC stocks from eight commercial fields 
across two US Midwestern states: Illinois and Nebraska (Fig. 1). SOC 
stock measurement locations (Fig. 3) were gridded (sites IL-DG, IL-PT, 
IL-RD, IL-RS, IL-RT), gridded within subplots (IL-BR, IL-MC), or model- 
based (NE). Across the fields, sample density averaged 7 samples per 
hectare and sample depth averaged 75 cm (Table 1). Vertical core 
samples were taken using a Giddings probe (Giddings machine com
pany: Windsor, CO) mounted on an all-terrain vehicle or a tractor. The 
intact cores were removed from plastic liners and sectioned into 
depthwise segments, varying by site from 5 to 30 cm in length, and 
homogenized by gentle hand crumbling. Gravimetric water content was 
measured by drying 5–7 g of subsample at 100 ◦C for 24 h, at which 
point the mass of soil was found to be constant. Bulk density (BD) for 
each depth interval was obtained by dividing the oven-dry mass of soil 
from each section (g) by the volume of the segmented portion of the core 
(cm3). At the sampled depths, there were no rock fragments (less than 2 
mm diameter), meaning that measured bulk density is that of the fine 
earth fraction. Soils from each segment were air-dried at ambient (25 
◦C), ground to pass a 2 mm sieve, and measured for total carbon con
centration by dry combustion. For soil samples with pH > 7.2 (Soil 
Science Division Staff, 2017), inorganic carbon was removed with the 
addition of 1% HCl (Walthert et al., 2010) so that the total carbon 
measured by dry combustion can be interpreted as organic carbon. 
Among the six sites at which pH was recorded, less than 2% of samples 
had pH > 7.2 (Table S1). Inorganic carbon in samples with pH > 7.2 was 
measured at one site (NE) by measuring total carbon on separate soil 
subsamples with and without acidification. These measurements sup
ported the assumption that inorganic carbon was negligible in samples 
with pH < 7.2 (Fig. S1). 

We collected the following auxiliary information (covariates) pro
posed by Potash et al. (2022) because of their (1) potential to predict 
SOC, (2) recommendation in SOC monitoring protocol guidance (Old
field et al., 2021), and (3) availability in public databases for every point 
of the field, a requirement for stratified and balanced sampling. From 
SSURGO (Soil Survey Staff, 2022), we obtained the soil series map units 
and the estimated SOC stock to the sampled depth for each map unit. 
From the National Elevation Dataset (U.S. Geological Survey, 2018), we 
collected elevation information, from which we derived three topo
graphic covariates: slope, aspect, and topographic wetness index (TWI). 
We used northing and easting geographic coordinates, measured in 
meters from the SW corner of each site. Finally, we used an SOC Index 
(SOCI) defined as blue / (green × red) (Thaler et al., 2019). We computed 
the index from the most recent Landsat ARD image available prior to 
planting and sampling that was free from clouds, snow, and crop resi
dues. An image was considered residue-free if the average NDTI was less 
than 0.35 (Beeson et al., 2020). The Landsat ARD product was chosen to 
provide uniform imagery across the range of sampling years 
(2012–2021) in our dataset. All of these covariates were processed to a 
10 m × 10 m UTM raster grid (100 pixels ha− 1) using bilinear 
interpolation. 

We also included an additional variable: predictions of SOC stock 
from the POLARIS soil mapping product (Chaney et al., 2019). POLARIS 
combines national pedon databases and SSURGO summaries with a 
machine learning model to predict various soil properties including SOC 
concentration and bulk density across the contiguous United States. 
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2.2. Sampling strategies 

We evaluated five sampling strategies: SRS, univariate stratified, 
multivariate stratified, balanced, and doubly balanced sampling. Each 
strategy was evaluated in each of the eight fields at a range sampling 
densities to capture performance at varying levels of estimation accu
racy and resources: 0.25, 0.5, 1.0, and 2.0 samples ha− 1. All five stra
tegies use probability sampling, which supports robust and unbiased 
estimation of the population mean (i.e., mean SOC stock of a given 
field). 

Stratified and balanced sampling have the potential to improve on 
the SRS baseline by incorporating auxiliary information (covariates) 
such as remote sensing into the sampling strategy. In addition to 
choosing which auxiliary information to include, stratified sampling 
requires several further choices: rescaling these covariates to make them 
comparable, an allocation of samples among the strata, and the number 
of strata (de Gruijter et al., 2006). While the standard k-means method 
for stratifying only supports continuous covariates, there are other 
clustering algorithms that accommodate categorical covariates (Huang, 

1998). 
Balanced sampling (Deville and Tillé, 2004; Brus, 2016) selects 

samples that are representative in the sense that the (inverse probability 
weighted) mean value of a covariate (e.g. slope) at the sample locations 
is equal to the mean value across the field. Balanced sampling has 
several advantages over stratified sampling. First, it can naturally 
incorporate categorical covariates, including the SSURGO soil series. 
Since SSURGO SOC stocks are constant within each soil series, balancing 
on soil series automatically balances on SSURGO SOC stocks. Thus it was 
not necessary to include the SSURGO stocks as a covariate in (doubly) 
balanced sampling. Second, users do not have to make the somewhat 
arbitrary choices listed above for constructing a stratification (Grafström 
and Schelin, 2014). One disadvantage of balanced sampling is that its 
uncertainty quantification is less rigorous than simple or stratified 
sampling because it is not possible to have a design-based unbiased 
variance estimate (Grafström and Schelin, 2014). 

Doubly balanced sampling (Grafström and Tillé, 2013) builds on 
balanced sampling by ensuring that samples are not only balanced, i.e. 
the average covariate value in the sample equals the average in the 

Fig. 1. Map of United States Midwest showing cropland (USDA 2020 National Cultivated Layer) and the eight Midwest field sites included in the study.  

Table 1 
Site characteristics. Soil texture was measured at IL-DG, IL-MC, and IL-PT and derived from SSURGO at the other sites. Abbreviations: mean annual temperature (MAT), 
mean annual precipitation (MAP).  

Site IL-BR IL-DG IL-MC IL-PT IL-RD IL-RS IL-RT NE 

Location (◦) − 90.19, 
39.06 

− 88.24, 
39.72 

− 89.06, 
39.72 

− 88.59, 
39.84 

− 88.21, 
39.89 

− 88.29, 
40.01 

− 88.15, 
39.88 

− 96.45, 
41.15 

Area (ha) 10 19 23 20 31 31 31 12 
MAT (◦C) 11 11 12 11 11 11 11 10 
MAP (cm) 94 94 93 94 94 94 94 80 
Tillage No-till Strip and 

conventional 
Conventional 
(chisel) 

Conventional 
(chisel) 

No-till Conservation Conventional 
(chisel) 

No-till 

Soil Texture Silt loam Silt loam Silty clay loam Silty clay loam Silt loam Silt loam Silty clay loam Silt loam 
Sample Depth (cm) 60 90 75 90 60 60 60 120 
Sample date June 

2019 
Oct 2021 June 2021 June 2021 Oct 

2021 
April 2020 Oct 2021 June 

2012 
Sample size 59 86 50 89 247 223 229 144 
Sample density (samples 

ha¡1) 
6 4 2 4 8 7 7 12 

Core depth segments (cm) 0–10, 
10–20, 
20–30, 
30–60 

0–15, 
15–30, 
30–45, 
45–60, 
60–75, 
75–90 

0–15, 
15–30, 
30–45, 
45–60, 
60–75 

0–15, 
15–30, 
30–45, 
45–60, 
60–75, 
75–90 

0–30, 
30–60 

0–15, 
15–30, 
30–60 

0–30, 
30–60 

0–5, 
5–15, 
15–30, 
30–60, 
60–90, 
90–120  
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population, but that the covariate values of the sample are well-spread 
in the population covariate distribution. Compared to balanced sam
pling, doubly balanced sampling may provide more efficient estimation 
as well as better support for mapping (Brus, 2015). 

The POLARIS SOC stock predictions are unique among our covariates 
in that they are intended to provide predictions of SOC stocks at each 
location in the field. The cumrootf rule (Dalenius and Hodges Jr. 1959) is 
a stratification that takes advantage of this additional information. The 
recently developed stratification ospats (de Gruijter, 2016) is another 
such strategy applied to SOC stock estimation. However, ospats requires 
estimates of the prediction error (R2 and autocorrelation range). Since 
neither of these is provided by POLARIS, we applied the cumrootf 
strategy to stratify the fields using the POLARIS predictions of SOC 
stock. 

2.3. Evaluation of sampling strategies 

We sought to evaluate how these sampling strategies (section 2.2) 
would perform at our eight study sites. This was accomplished by 
combining the high-density SOC stock measurements with a Bayesian 
geostatistical model to simulate implementations of the sampling stra
tegies. Also known as ex-ante evaluation (Potash et al., 2022, see also 
Hofman and Brus, 2021), this evaluation method has several advantages 
over traditional ex-post evaluation, which evaluates a strategy by 
implementing it. Instead, we can repurpose existing SOC stock mea
surements to evaluate alternative sampling strategies, without having to 
implement those strategies. We can also evaluate multiple strategies 
using a single common set of measurements. Specifically, a Bayesian 
Kriging with external drift (KED) model of SOC stock (see Supplemen
tary Methods) was used to simulate 200 SOC stock maps for each field. 
This model includes all covariates (Table 2) except the SSURGO map 
unit (to avoid a singular regression design matrix). For each sampling 
strategy and sample density, we generated 200 sample designs. Each of 
the 200 × 200 combinations of an SOC stock map and sampling strategy 
led to a point estimate and confidence interval (CI) for mean SOC stock. 

The relative error was calculated for each of these estimates relative 
to the mean SOC stock of the corresponding map. For each map, sam
pling strategy (SRS, univariate stratified, multivariate stratified, 
balanced, and doubly balanced), and sample density there were thus 200 
relative errors, one for each sample. The relative error bound for this 
map was then calculated as the 95th percentile of these 200 values. 
There is thus a relative error bound for each of the 200 posterior maps. 
We then compared the sample size needed by each strategy to achieve a 
given relative error by assuming, based on the statistical theory of 
probability sampling, that the relative error bound was linear in the 
inverse square root of the sample size. 

We also considered a non-parametric evaluation approach in which 
the grid of sample locations was treated as a coarse representation of the 

field and these points were sub-sampled using each of the strategies 
under evaluation. On the one hand, this approach avoids the use of the 
KED model and its assumptions employed in our primary evaluation 
methodology. On the other hand, this approach does not account for the 
spatial distribution of SOC stocks between the locations sampled in the 
data. Thus, we do not consider the quantitative results of the non- 
parametric evaluation to be realistic but we consider its qualitative re
sults as a useful check on the qualitative results of the parametric 
evaluation. 

For multivariate stratification, we used the standard k-means clus
tering algorithm (de Gruijter et al., 2006). Since k-means does not 
naturally accommodate categorical covariates, the SSURGO map unit 
was not included. To put the covariates on a common scale, we used a 
percent rank transformation (Potash et al., 2022). We also considered 
the Mahalanobis distance function to account for the correlation struc
ture of the covariates. In the absence of prior information on the vari
ability of SOC stocks within each stratum, we allocated samples in 
proportion to the size (area) of the strata (de Gruijter et al., 2006). Since 
uncertainty quantification is essential, each stratum must have at least 2 
samples. Thus the number of strata was set such that, under proportional 
allocation, each stratum received at least two samples. For balanced 
sampling, we included all covariates except POLARIS predictions and 
generated samples in R using the BalancedSampling package 
(Grafström and Lisic, 2019). 

3. Results 

Across the eight sites, Landsat SOCI, SSURGO SOC stock, and TWI 
covariates had the strongest and positive correlations with measured 
SOC stocks (Figs. 2-3). Notably, no single covariate was consistently 
predictive across all sites. Positive correlations are expected given the 
putative relationships of these covariates to SOC stocks. When all the 
covariates are incorporated into the KED model, the strength and sign of 
their coefficients (Fig. S2) are less clear, which is also expected due to 
correlations among the covariates. The nugget-to-sill ratio, which 
quantifies the degree of spatial autocorrelation in SOC stock variability 
that is not explained by the covariates, varies significantly across sites 
(Fig. S3). 

We generated posterior simulations of the SOC stock maps from the 
fitted KED model for each site. A map of the posterior median of these 
simulations is plotted for each site in Fig. 4. There was a large variation 
in SOC stock magnitudes across sites, as well as significant variation in 
the posterior distributions of SOC stock, both at each pixel (Fig. S5) and 
across each field (Fig. S6). 

The simulated SOC stock maps, which are informed by high density 
SOC stock measurements, were used to simulate the four sampling 
strategies. The relative error performance of each sampling strategy was 
compared to SRS at each site for each sampling density (Fig. S7), across 

Table 2 
Covariates used by the sampling strategies. Abbreviations: Global Positioning System (GPS), National Elevation Dataset (NED), Soil Organic Carbon Index (SOCI), Soil 
Survey Geographic Database (SSURGO), Topographic Wetness Index (TWI), Kriging with external drift (KED).  

Category Covariate Source  
Included in Sampling Strategy? 

Included in the KED 
model?    

Simple 
Random 

Univariate 
Stratified 

Multivariate 
Stratified 

(Doubly) 
Balanced  

Geography Northing GPS   ✓ ✓ ✓ 
Easting GPS   ✓ ✓ ✓ 

Topography TWI NED   ✓ ✓ ✓ 
Slope NED   ✓ ✓ ✓ 
Aspect NED   ✓ ✓ ✓ 

Spectroscopy SOCI Landsat 
ARD   

✓ ✓ ✓ 

Survey Soil Series SSURGO    ✓  
Estimated map unit SOC 
stock 

SSURGO   ✓  ✓ 

Multiple Predicted SOC stock POLARIS  ✓   ✓  
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sampling densities (Fig. 5), and averaged across sites (Fig. 6). Using an 
inverse quadratic relationship between estimation error and sample size 
(de Gruijter et al., 2006), these relative error reductions were translated 
into sample size reductions to achieve a given error. Averaged across the 
eight sites (Fig. 6), stratification using POLARIS predictions of SOC stock 
would reduce sample sizes by 10% (95% CI, 3% to 16%) compared to 
SRS. Multivariate stratification would reduce sample sizes by 17% (95% 

CI, 11% to 24%). Balanced sampling would reduce sample sizes by 25% 
(95% CI, 20% to 31%). Doubly balanced sampling would reduce sample 
sizes by 32% (95% CI, 25% to 37%) on average compared to SRS. 

The benefit of each sampling strategy for reducing sampling fre
quency was highly site-specific. For example, while balanced sampling 
reduced the sample size required at IL-RT by 61% (95% CI, 50% to 
68%), the reduction at IL-BR was 16% (95% CI, − 5% to 34%). This 

Fig. 2. Univariate relationships between covariates (columns) and measured SOC stock at each of the eight sites (rows). Explained variance (R2) is displayed in the 
corner of each panel. Figure excludes three covariates with consistently low R2 (aspect, Northing, and Easting), which can be found in Fig. S4. 

Fig. 3. Left: Distribution across the eight sites of SOC stock variance explained (R2) by each covariate. Dots and intervals indicate median, 50% and 95% intervals. 
Right: Variance explained by all covariates (multiple R2) at each site. 
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variability is almost entirely explained by the predictive power of the 
covariates at each site, as measured by R2 (Fig. S8). That is, the more 
predictive the covariates used by a given strategy are of SOC stocks at a 
site, the better the strategy performed at that site. 

4. Discussion 

4.1. Summary of major findings 

In this study we rigorously evaluated field-scale SOC stock sampling 
strategies across eight commercial agricultural fields in the US Midwest 
using high-density, deep SOC stock measurements and a Bayesian 

geostatistical model. The evaluation generated two key findings to 
inform sampling strategy and sample size selection. First, we provided 
realistic estimates of estimation strategy performance and found a clear 
ordering: doubly balanced sampling performed best, followed by 
balanced sampling, multivariate stratified sampling, univariate strati
fied sampling, and, lastly, SRS (Fig. 6). Second, the set of covariates 
available from public databases previously proposed by Potash et al. 
(2022) explained a substantial proportion of SOC stock variability in 
most fields, thereby enabling more efficient SOC stock estimation. 

Specifically, we found that doubly balanced sampling was the best 
performing strategy, reducing the sample size required to achieve a 
given estimation accuracy by about 32% compared to SRS on average 

Fig. 4. SOC stock map at each site according to the posterior median prediction using the Kriging with external drift (KED) model. Dots indicate locations at which 
soils were sampled for measurement of SOC stocks in order to produce these maps. 

Fig. 5. Relative error bound reduction of each sampling strategy over simple random sampling at each site. Dots and error bars display posterior median, 50%, and 
95% intervals. 

E. Potash et al.                                                                                                                                                                                                                                  



Geoderma 438 (2023) 116587

7

across our eight sites. The benefits of balanced sampling previously 
documented at the single IL-RS site (Potash et al., 2022) extended across 
the range of agricultural fields we sampled in two states in the US 
Midwest. While multivariate stratified and balanced sampling were 
previously found to provide similar benefits at the IL-RS site (Potash 
et al., 2022), our wider study reveals that this site was an outlier: 
balanced sampling significantly outperformed multivariate stratified 
sampling averaged across our eight sites (Fig. 6). Moreover, doubly 
balanced sampling performed even better. 

The covariates primarily responsible for the benefits of these stra
tegies were Landsat SOCI, SSURGO SOC stock, and TWI. Notably, the 
performance of all strategies varied substantially across the sites, though 
even at its worst-performing site (IL-BR), doubly balanced sampling 
would likely reduce required sample sizes by 11%. The variability in 
performance across sites was attributed to the proportion of SOC stock 
variability explained (R2) by the covariates across sites, ranging from 
14% at IL-BR to 64% at IL-RT (Fig. 3). Moreover, no single covariate 
dominated in explanatory power (Figs. 2-3) so that in order to obtain the 
above benefits, a multivariate strategy incorporating all of these cova
riates should be used. This was in contrast to the previous evaluation by 
Potash et al. (2022) which, due to its focus on a single site, concluded 
that a univariate strategy (using SOCI) could provide the same benefits 
as a multivariate strategy. 

The inter-site variability in the relationships between covariates and 
SOC stocks poses a challenge for modeling SOC stocks in unsampled 
fields. Indeed, POLARIS predictions of SOC stocks, and hence univariate 
stratified sampling based on those predictions, were poor in most fields. 
This may also be due to the fact that the POLARIS model is fitted to 
relatively sparse soil survey data that rarely includes multiple samples 
within a given field. Sampling strategies that rely on multiple covariates 
(e.g. doubly balanced, balanced, and multivariate stratified sampling) 
are robust to this variability, taking advantage of the correlation be
tween covariates and SOC stocks without assuming any particular 
relationship between them. Correlations between covariates and SOC 
stocks enabled such strategies to perform well across the diversity of 
fields in this study. In contrast, strategies that use predictions of SOC 
stocks (e.g. univariate stratified sampling using POLARIS) rely not just 
on covariates being correlated to SOC stocks but on a model that com
bines those covariates into a single predictor of SOC stocks. 

Our findings are sensitive to the parametric assumptions of the KED 
model used to generate the SOC stock maps used in our evaluation. We 
chose this model because it can capture spatial autocorrelation, mea
surement error, and covariate relationships, as well as uncertainty in 
these parameters. However, to test the sensitivity of our findings to this 
choice of model we also considered two alternative evaluations: using a 
Bayesian Additive Regression Trees model (Chipman et al., 2010; see 

also Potash et al., 2022) as well as a non-parametric approach (Figs. S9- 
S12). The high degree of qualitative agreement among evaluation results 
further supports our findings. While the methodology used in this study 
enabled us to efficiently compare a large set of estimation strategy op
tions without implementing each of them in each field, this ex-ante 
evaluation does rely on more assumptions than ex-post evaluation. 
Thus, it may be useful to confirm our findings using ex-post evaluation 
by comparing some or all of these strategies via field implementation. 

4.2. Expanded contexts 

While our study immediately concerns estimation of absolute SOC 
stock at the field scale, the findings also have important implications for 
two expanded contexts: SOC stock change (different estimand) and 
multifield assessments (larger spatial scale). 

4.2.1. SOC stock change 
There are two basic study designs for estimating SOC stock change: 

cross-sectional and longitudinal, including both paired and unpaired 
longitudinal designs. In this section, we discuss (1) how our findings on 
SOC stock estimation are directly relevant to SOC stock change esti
mation using cross-sectional and unpaired longitudinal designs, and (2) 
how our findings are indirectly relevant to SOC stock change estimation 
using paired longitudinal designs. 

In a cross-sectional study (e.g., Yang et al., 2022), also known as 
space-for-time substitution or chronosequence, SOC stock change due to 
some treatment (e.g. land use change) is estimated by identifying areas 
of similar soils that have been treated (e.g. restored from agriculture to 
prairie) and untreated (e.g. remain in agriculture). By comparing their 
present-day absolute SOC stocks, researchers estimate the effect of the 
treatment (e.g. prairie restoration) on SOC stock change. Cross-sectional 
studies are advantageous in that they can estimate long-term (e.g. 
decadal) treatment effects without needing to wait that duration, albeit 
with more assumptions than a longitudinal design (see below). Our 
findings on the efficiency of sampling designs for SOC stock estimation 
can be applied directly to a cross-sectional study: the sampling errors in 
estimating the treated and untreated SOC stocks are independent, so the 
squared standard error of their difference is equal to the sum of their 
squared standard errors. For example, if doubly balanced sampling re
duces each SOC stock standard error by about 17% (Fig. 6), it reduces 
the SOC stock change standard error by about 17% as well. 

In a longitudinal study, the SOC stock change is quantified by 
measuring SOC stock at two different time points. The sampling loca
tions at the two time points may be the same (paired) or different (un
paired). In an unpaired longitudinal design, SOC stock change is 
estimated simply by estimating the absolute SOC stock at each time 

Fig. 6. Reduction in relative error bound and sample size compared to simple random sampling, averaged across sites. Dots and error bars display posterior median, 
50%, and 95% intervals. 
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point and taking their difference. Thus, as with the cross-sectional 
design above, our findings can be directly applied to an unpaired lon
gitudinal design to measure SOC stock change. One benefit of unpaired 
designs for regulatory applications is that, unlike paired designs, the 
follow-up sampling locations may be withheld from farmers so those 
locations cannot be targeted for treatment, thereby mitigating possible 
fraud (de Gruijter, 2016; Lawrence, 2020). 

However, for longitudinal studies, paired SOC stock designs have 
two benefits over unpaired designs. First, they enable estimation of SOC 
stock change at each sampling location, thereby facilitating the creation 
of an SOC stock change map (see section 4.3.3). Second, a paired design 
is potentially more efficient than an unpaired design because its vari
ance is reduced by the covariance between the SOC stocks at the two 
time points (Lark, 2009). However, the magnitude of this benefit may be 
limited by the combination of remeasurement location error and the 
large variability of SOC stocks on small length scales (Poeplau et al., 
2022). One study found that the covariance between repeated measures 
of agricultural SOC concentrations across the United Kingdom would 
reduce the error of SOC concentration change estimation by just 15% 
(Saby, 2008). A better understanding of this covariance for SOC stocks at 
the scale of an agricultural field would benefit the design of future SOC 
stock change measurement projects. 

The aforementioned covariance benefits all sampling strategies, 
including SRS. The additional benefit of sampling strategies such as 
doubly balanced sampling over SRS in the context of paired sampling for 
SOC stock change estimation is unclear. We are not aware of any studies 
on the correlates of within-field SOC stock change. To the extent that our 
auxiliary information such as TWI is correlated with SOC stock change 
as well as absolute SOC stock, the strategies presented here will also 
yield benefits for paired estimation of SOC stock change. We note that 
our discussion of paired sampling designs also applies to sampling and 
measuring initial SOC stocks and using a biogeochemical model to es
timate the SOC stock change at each location instead of re-measuring 
SOC stocks. 

4.2.2. Multifield assessments 
When measuring SOC stocks and their changes across multiple fields, 

it is natural to stratify at the field level. This reduces estimation error 
compared to an unstratified design by ensuring that each field receives 
an appropriate number of samples, commonly proportional to its area. 
The strategies presented in this article can be used in conjunction with a 
field-level stratification. The efficiency of such a design can be calcu
lated in terms of the within-field and between-field SOC stock sampling 
variability. The sampling designs we considered help to reduce the 
within-field sampling variability. For example, if doubly balanced 
sampling reduces within-field sampling variability (standard error) by 
17% on average (Fig. 6), then by using doubly balanced sampling within 
each field (stratum) of a multifield project, the total error in the project 
would also be reduced by about 17% compared to field stratification 
alone. 

In a large multifield project, the sample size within each field may be 
very small, as few as two samples. It is important to note that the benefits 
of the sampling strategies we evaluated, while still appreciable, were 
significantly smaller with smaller sample sizes (Fig. S13). One benefit of 
(doubly) balanced sampling is that it can be used with as few as two 
samples per field, whereas stratified sampling requires at least four 
samples per field (i.e. two strata with two samples each). 

4.3. Additional considerations for sampling design selection 

Our study provides strong evidence that doubly balanced sampling is 
the most efficient probability sampling design for estimation of SOC 
stocks. However, such mean estimation performance is not the only 
consideration in selecting a sampling design. Here we discuss three other 
considerations: uncertainty quantification, mapping, and 
implementation. 

4.3.1. Uncertainty quantification 
Our main results concern point estimation of SOC stocks, i.e. a single 

number estimate. Arguably more important than point estimation is the 
quantification of estimation uncertainty, i.e. the construction of a con
fidence interval around the point estimate. The importance of uncer
tainty quantification is clear in carbon crediting, where many protocols 
(e.g. Climate Action Reserve, 2022) issue credits based not on the point 
estimate of carbon but on the lower bound of a confidence interval in 
order to reduce the risk of issuing credits for carbon that has not actually 
been sequestered. Uncertainty quantification is also important in other 
applications such as field trials, in which an estimate of the uncertainty 
in the effect of a management practice on SOC stocks is essential. 
Although less efficient than (doubly) balanced sampling, SRS and 
stratified sampling have an important advantage: their uncertainty 
quantification is more directly supported by the central limit theorem, 
and hence is more rigorous. On the other hand, our study found the 
uncertainty quantification of (doubly) balanced to be empirically sound 
(Fig. S14). In some applications this may be sufficient (see section 4.4). 

4.3.2. Mapping 
Estimating the SOC stock and SOC stock change of an agricultural 

field is of major importance. These estimands are spatial means (or to
tals). However, some studies may be interested in other estimands. For 
example, we may be interested in mapping SOC stocks in order to un
derstand how they vary within a field and with respect to covariates. In 
this case, the results of this study do not directly apply. However, as 
discussed by Brus (2015), doubly balanced sampling can support SOC 
stock mapping due to the fact that its samples are well spread on 
covariates including spatial coordinates. 

4.3.3. Implementation 
The practicality of implementation can also be a consideration in the 

selection of a sampling design. For example, practical considerations are 
likely a factor in the ubiquity of grid sampling despite the limitations of 
this non-probability design for rigorous mean estimation. Compared to 
(doubly) balanced sampling, multivariate stratified sampling requires 
several additional choices for which there is limited guidance (Oldfield 
et al., 2021). This lack of information poses a practical impediment to 
adoption, though recent evaluations (Potash et al., 2022) have narrowed 
the knowledge gap. Balanced sampling has not been widely adopted and 
this may be due to its complexity and obscurity relative to SRS or 
stratified sampling. 

4.4. Recommendations 

Here we summarize our recommendations given the expanded con
texts (section 4.2) of SOC stock change estimation and multifield pro
jects, and the additional considerations (section 4.3) of uncertainty 
quantification, mapping, and implementation. We describe how our 
findings can provide concrete guidance for both research and carbon 
credits. 

4.4.1. Research studies 
At present, research studies rarely employ any of the probability 

sampling designs considered in our study. Instead, a non-probability 
design such as grid sampling is commonly used. Some of the consider
ations that lead to this choice include: good coverage of the area of in
terest relative to SRS to improve the accuracy of SOC stock estimates and 
support the mapping of SOC stocks within the field (section 4.3.2) as 
well as reduced complexity in field work (section 4.3.3). In fact, when 
we evaluated grid sampling at our sites, point estimates of SOC stocks 
were more accurate than any of the probability sampling designs in our 
study (Fig. S15). However, grid sampling does not support rigorous 
estimation or uncertainty quantification of SOC stocks or SOC stock 
changes without a model and a high sample density or strong prior in
formation. Indeed, naively using Student’s t distribution to construct 
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confidence intervals for our grid samples, a commonly used but theo
retically unfounded procedure, produced poor uncertainty quantifica
tion (Fig. S16). 

To overcome these shortcomings while continuing to support SOC 
stock modeling and mapping, we recommend the adoption of doubly 
balanced sampling. While a complete theoretical understanding of un
certainty quantification using doubly balanced sampling is lacking 
(section 4.3.1), it is a significant improvement over grid sampling in this 
regard and our study found that it is empirically sound. For research on 
and monitoring of SOC stock change (section 4.2.1), doubly balanced 
sampling using our set of covariates would likely provide significant 
efficiency gains compared to SRS for cross-sectional and unpaired lon
gitudinal studies. However, more work is needed to understand the ef
ficiency benefits of doubly balanced paired sampling for estimating SOC 
stock changes (section 4.2.1). 

4.4.2. Carbon credits 
Major carbon credit protocols currently recommend or require 

stratified sampling. The efficiency benefit of within-field stratification 
will be modest at small per-field sample sizes (section 4.2.2). Our 
evaluation shows that doubly balanced sampling could be significantly 
more efficient. However, a better understanding of uncertainty quanti
fication for SOC stock estimation under doubly balanced sampling 
should be developed before this strategy can be recommended for car
bon crediting (section 4.3.1). Finally, it is unclear what the benefit of 
either stratified or doubly balanced sampling would be in conjunction 
with paired sampling (section 4.2.1). 

4.4.3. Sample size selection 
Our study provides much-needed guidance on the estimation effi

ciency benefits of incorporating auxiliary information into SOC stock 
sampling designs. This information allows a study design to reduce its 
sample size relative to SRS. For example, if a sample size of 1.0 samples 
ha− 1 is appropriate for SRS, then the same error on average across our 
fields could likely be achieved by adopting doubly balanced sampling 
using 30% lower density, at 0.7 samples ha− 1. However, selecting an 
appropriate sample size for SRS in the first place presents a challenge, 
since the accuracy of the resulting estimate is a function of within-field 
SOC stock variability, which varies significantly across fields. For 
example, we found that the standard deviation of SOC stocks (to various 
depths, see Table 1) within our 8 fields varied from 6 Mg ha− 1 (IL-BR) to 
35 Mg ha− 1 (NE) (Fig. S5), with very little of this variability explained by 
field size (see Lawrence, 2020) or sample depth. However, SOC stock 
standard deviation was strongly correlated with mean SOC stock 
(Fig. S17). At present, we are unaware of any proven approaches to 
predicting SOC stock variability using readily available data, as opposed 
to preliminary sampling (e.g. de Gruijter, 2016). Future work should 
explore predicting SOC stock variability to guide sample size selection. 
Selecting an appropriate sample size is essential to ensuring that SOC 
stock measurement data can support the analysis sought by 
investigators. 

5. Conclusions 

Using a multifield dataset of high-density and deep SOC stock mea
surements we found that doubly balanced sampling using readily 
available auxiliary information can significantly reduce the number of 
samples needed to estimate the SOC stock of an agricultural field. These 
reductions make doubly balanced sampling using this auxiliary infor
mation a promising tool for efficiently monitoring, managing, and 
researching SOC stocks and SOC stock changes. However, a complete 
understanding of uncertainty quantification under doubly balanced 
sampling is lacking so that stratified sampling may be preferred for 
regulatory applications. We found that stratified sampling can also 
improve sampling efficiency, but significantly less so than doubly 
balanced sampling. Finally, we highlight potential next steps for 

research on SOC stock sampling designs, and have made our SOC stock 
data available to support continued progress in SOC stock research. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The data that support the findings of this study are openly available 
in figshare at https://doi.org/10.6084/m9.figshare.23669304. 

Acknowledgements 

The authors acknowledge financial support from the DOE ARPA-E 
SMARTFARM program grant nos. DE-AR0001227 and DE-AR0001382, 
the NSF Signal-in-Soil program grant no. P008697001, the U.S. 
Department of Energy, Energy Efficiency and Renewable Energy (EERE), 
Bioenergy Technologies Office (BETO), grant no. DE-EE0008521, a joint 
ACES-ICGA funding initiative via USDA Hatch ILLU-802-946, and 
Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021- 
32799/project accession no. 1024178 from the USDA National Institute 
of Food and Agriculture. 

Appendix A. Supplementary material 

Supplementary material to this article can be found online at https:// 
doi.org/10.1016/j.geoderma.2023.116587. 

References 

Beeson, P.C., Daughtry, C.ST., Wallander, S.A., 2020. Estimates of conservation tillage 
practices using landsat archive. Remote Sens. (Basel) 12 (16), 2665. 

Brus, D.J., 2015. Balanced sampling: a versatile sampling approach for statistical soil 
surveys. Geoderma 253, 111–121. 

Chaney, N.W., et al., 2019. POLARIS soil properties: 30-m probabilistic maps of soil 
properties over the contiguous United States. Water Resour. Res. 55 (4), 2916–2938. 

Chipman, Hugh A., George, Edward I., McCulloch, Robert E., 2010. BART: Bayesian 
additive regression trees. Ann. Appl. Stat. 4 (1), 266–298. https://doi.org/10.1214/ 
09-AOAS285. 

Climate Action Reserve. (2022). U.S. Soil Enrichment Protocol: Reducing emissions and 
enhancing soil carbon sequestration on agricultural lands. https://www. 
climateactionreserve.org/how/protocols/ncs/soil-enrichment/. 

Dalenius, T., Hodges Jr, J.L., 1959. Minimum variance stratification. J. Am. Stat. Assoc. 
54 (285), 88–101. 

de Gruijter, J.J., et al., 2016. Farm-scale soil carbon auditing. Geoderma. 
de Gruijter, J., Brus, D.J., Bierkens, M.FP., Knotters, M., 2006. Sampling for Natural 

Resource Monitoring. Springer Science & Business Media. 
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