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Abstract

Estimating  soil  organic  carbon (SOC) stocks  of agricultural  fields  has  a  range of  important

applications  from  development  of  sustainable  management  practices  to  monitoring  carbon

stocks. There are  many estimation strategies with the potential for more reliable estimates of

SOC  stock  and  more  efficient  use  of  soil  sampling  and  analysis  resources,  especially  by

leveraging readily available auxiliary information such as remote sensing. However, concrete

guidance for strategy selection is lacking. This study narrows this gap with a comparison of

strategies for estimating deep SOC stock (0-60cm) in a prototypical field. Using high density
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SOC stock measurements and simulation, we built on past studies by  1) ex-ante evaluating a

large number of strategy options, 2) using a Bayesian approach to quantify the uncertainty of the

comparison, and 3) considering multiple Bayesian models to assess sensitivity to this modeling

choice. We found that, using readily available auxiliary information, both balanced and stratified

sampling  offer  substantial  improvements  over  simple  random  sampling.  The  auxiliary

information most important for this improvement is a Sentinel-2 SOC index =  blue / (green x

red), followed by the topographic wetness index. We found that these results are robust to the

choice of mapping method, but that there is uncertainty in the magnitude of improvement. We

recommend future studies implement this Bayesian approach for simulated ex-ante evaluation of

SOC stock estimation strategies across more fields to investigate the generalizability of these

findings.

Keywords: soil carbon stocks; sampling; estimation; evaluation; geostatistics; Bayesian

1. Introduction

Estimating soil organic carbon (SOC) stock in agriculturally managed soils at the field scale has 

a range of important applications from development of sustainable management practices to 

monitoring carbon stocks. Such an estimation strategy entails two statistical steps: (1) a sampling

design selects locations at which to take measurements, and (2) an estimator combines those 

sample measurements to estimate mean SOC stock across the field. Which strategy should we 

use? In this study we focus on probability-based sampling designs (e.g. stratified sampling) with 

design-unbiased estimators (e.g. inverse probability-weighted mean) since these are preferred for

spatial mean estimation (Brus and de Gruijter, 1997; Brus, 2021) and are required by various 
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SOC stock monitoring protocols (Oldfield et al., 2021). The baseline estimation strategy is 

simple random sampling with the sample mean estimator.

Stratified sampling, i.e. dividing the field into areas of similar characteristics, is often 

recommended because it can lead to more efficient estimation of mean SOC stock (de Gruijter et 

al., 2006; Oldfield et al., 2021). However, several choices must be made to design a 

stratification, e.g. which variables to stratify and into how many strata. Guidance for these 

choices remains qualitative and quantitative evidence for the benefits of stratified sampling and 

how these benefits might depend on these choices is lacking (Oldfield et al., 2021). A promising 

probability sampling design that also takes advantage of auxiliary information is balanced 

sampling (Deville and Tille, 2004). Balanced sampling does not require designing an 

intermediate stratification which can both improve performance and reduce the number of 

choices requiring guidance.

However, there is a knowledge gap about the performance of these strategies for 

estimating mean SOC stock in agricultural fields. Recently, Lawrence et al. (2020) identified just

one study (Mallarino and Wittry, 2004) evaluating stratified sampling for estimating mean soil 

organic matter (SOM) in agricultural fields, and zero studies for mean SOC stock. De Gruijter et 

al. (2016) validated a stratified sampling design for mean SOC stock. However, because their 

study site was a 2083 ha farm and their stratification relied on a previous SOC stock evaluation 

with soil sampling, their findings are not directly relevant to us. Another study validating 

strategies for mean SOC stock estimation is Brus (2015), though it was at the district level in 

Ethiopia. Altogether, data on the performance of strategies to estimate mean SOC stock in 

agricultural fields is lacking.

To fill this gap, we need to evaluate these estimation strategies in agricultural fields by 

estimating and comparing their performance. One conventional approach to evaluating 
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estimation strategies is to implement each one in the field and estimate its performance ex post 

using variance formulas. A potentially more versatile and efficient method evaluates 

performance ex ante using simulation. First, a field is intensively sampled to create an SOC stock

map. Then different estimation strategies are simulated against the map and their estimates 

compared with the map’s mean SOC stock (Figure 1). Uncertainty in the SOC stock map can be 

incorporated by repeating this process using many such maps.

Figure 1: Flowcharts of (A) mean SOC stock estimation strategy and (B) ex-ante 

evaluation of these strategies.

While ex-ante evaluation using simulation has proved a useful tool for evaluating mean 

SOC stock estimation strategies, most applications have ignored two important technical 

considerations. The first consideration is propagating uncertainty in the reference map through 

the evaluation procedure to quantify uncertainty in the performance of quantification strategies 
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and their comparison. This consideration has been previously addressed in the context of 

estimating mean nitrate content by using Bayesian methods (Hofman and Brus, 2021). The 

second consideration is the sensitivity of the evaluation to the predictive mapping method used to

generate the map. To address this consideration, our approach expands on Hofman and Brus 

(2021) by employing and comparing both geostatistical and machine learning methods for 

predictive mapping of SOC stock.

The objective of this study is to demonstrate the use of ex-ante evaluation to compare 

different estimation strategies (simple random sampling, stratified sampling, and balanced 

sampling) in a prototypical agricultural field to fill the above knowledge gap and address the 

technical considerations. Specifically, we aim to answer the following two questions: (1) Which 

estimation strategy would perform best and which auxiliary information is most beneficial? (2) 

How much uncertainty and sensitivity is there in the evaluation? We draw on high-density soil 

sampling and SOC stock measurement at a commercial field in central Illinois to address these 

questions. Importantly, we estimate deep (0 – 60 cm) SOC stocks because of evidence that lower

depths play an important role in SOC stock dynamics (Tautges et al., 2019). We discuss how 

future studies can build on our evaluation results to develop a knowledge base for guiding efforts

to estimate mean SOC stock in agricultural fields.

2. Review of estimation strategies and evaluation methods

In this section we review strategies for estimating mean SOC stock (section 2.1) and methods for

evaluating these strategies (section 2.2). Compared to other reviews of these topics (e.g., de 

Gruijter et al., 2006), ours has two distinctions. First, while de Gruijter et al. (2006) refer to the 

combined stages of a sampling design and estimator as a sampling strategy, we prefer the term 
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estimation strategy to emphasize that the sampling design does not completely determine the 

estimator. Our review highlights these as discrete choices. Second, we devote significant 

attention to what we call ex-ante evaluation. This method for evaluating estimation strategies has

not to our knowledge received a careful review in the soil science literature, nor a direct 

comparison to the traditional alternative which we term ex-post evaluation.

2.1 Estimation strategies

We define an estimation strategy as the combination of two statistical steps: a sampling design 

and an estimator.

2.1.1 Sampling designs

A probability sampling design is one in which each point in the study area has a known and non-

zero probability of being selected for measurement. Probability sampling has the benefit of 

supporting robust estimation of the population mean (i.e. mean SOC stock) as described in the 

next subsection. For regulatory applications, an auxiliary benefit of randomized sampling 

locations is mitigation of fraud (de Gruijter et al., 2016; Lawrence et al. 2020). We consider three

probability sampling designs: simple random sampling (SRS), stratified sampling, and balanced 

sampling. SRS serves as our baseline. 

Stratified and balanced sampling have the potential to improve on SRS by incorporating 

auxiliary information (covariates) such as topography and remote sensing into the selection of 

sample locations. In addition to choosing which auxiliary information to include, stratified 

sampling requires several further choices including: rescaling these covariates to make them 

comparable, an allocation of samples among the strata, and the number of strata (de Gruijter et 

al., 2006). While the traditional k-means approach to constructing a stratification only supports 
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continuous covariates, there are other clustering algorithms that accommodate categorical 

covariates (Huang, 1998).

Balanced sampling (Deville and Tillé, 2004; Brus, 2015) selects samples that are 

representative in the sense that the (inverse probability weighted) mean value of a covariate (e.g. 

slope) at the sample locations is equal to the mean value across the field. Balanced sampling has 

several advantages over stratified sampling. First, it can naturally incorporate categorical 

covariates. Second, we need not make the somewhat arbitrary choices listed above for 

constructing a stratification (Grafström and Schelin, 2014). One disadvantage of balanced 

samping is it may lead to less robust uncertainty quantification than simple or stratified sampling

(see next section).

2.1.2 Estimators

Probability sampling designs yield a natural unbiased estimate of mean SOC stock, called the 

Horvitz-Thompson (HT) estimator in its most general formulation, which averages the 

measurements weighting each by the inverse of probability of inclusion in the sample. In the case

of SRS and stratified sampling, the HT estimator is the usual sample mean and weighted sample 

mean, respectively. The HT estimator is design-unbiased so that the average estimate across 

many random samples of a given design is equal to the true mean SOC stock.

One disadvantage of the HT estimator is that it does not take into account auxiliary 

information beyond what was used to inform the sampling design. Most monitoring protocols 

require estimators to be design-unbiased, so that model-based estimators accounting for auxiliary

information are not permitted. An alternative to this is the so-called model-assisted estimators 

(Brus, 2000).

In addition to providing a point (i.e. single-number) estimate of mean SOC stock, it is 

7

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151



important for both scientific and regulatory applications to quantify the uncertainty of this 

estimate via a confidence interval (CI). For the probability design-based strategies we are 

considering, CIs are constructed by estimating the variance of the estimator and then assuming a 

normal or Student-t distribution to calculate the CI. For simple and stratified sampling, this 

assumption is justified by the central limit theorem and variance estimation is design-unbiased. 

However, for balanced sampling it is not possible to have a design-based unbiased variance 

estimate (Grafström and Schelin, 2014) and so uncertainty quantification may be less robust.

2.1.3 Measures of estimation strategy performance

There are several ways of quantifying the performance of an estimation strategy. For a given 

point estimate of mean SOC stock, the error is commonly quantified in terms of squared error, 

absolute error, and relative error. Since probability sampling designs are randomized, the 

estimate is also random and so are these error quantities. Thus, each estimation strategy has a 

corresponding distribution of squared error, relative error, etc. These are commonly summarized 

using a single number, e.g. mean squared error is the mean (or expected) squared error across 

many random samples.

In this study our primary performance measure is the 95th percentile of the relative error 

distribution, which we simply call the relative error bound because with high probability (95%), 

the relative error of the estimate will be less than (bounded by) this number. This is a version of 

expanded measurement uncertainty as defined by ISO Guide 98 (ISO, 2009) to be “a quantity 

defining an interval about the result of a measurement that may be expected to encompass a large

fraction of the distribution of values that could reasonably be attributed to the measurand” (see 

also Hofman and Brus, 2021).

We can also measure the performance of the estimated CI. A simple but important 
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measure of CI performance is coverage, i.e. the proportion of CIs which contain the true value. 

Ideally the coverage of the 95% CI is 95%. Another measure of CI performance that is common 

in SOC stock monitoring protocols (Oldfield et al., 2021) is the relative width of the 95% CI. We

note that when the point and variance estimates are design-unbiased (see section 2.1.2) then the 

expected relative width of the 95% CI is equal to the relative error bound.1 We prefer the relative

error bound measure because its meaning does not rely on the design-unbiasedness of the 

estimate nor its variance.

2.2 Evaluation methods

Here we review two different approaches to validating estimation strategies, i.e. measuring and 

comparing their performance. The conventional approach is ex-post evaluation , in which each 

strategy is implemented in the field to estimate its performance. In this study we opt for ex-ante 

evaluation, in which SOC stock maps are created and then different strategies are simulated 

against these maps.

2.2.1 Ex-post evaluation

One way to evaluate an estimation strategy is by implementing it and estimating its estimation 

variance. There are standard formulas for estimating the variance of SRS and stratified sampling 

(de Gruijter et al., 2006). Moreover, after stratified sampling we can estimate the precision that 

would have been obtained with SRS using the law of total variance (equation 7.16 of de Gruijter 

et al., 2006). These formulas for simple and stratified sampling are expected to be quite robust 

(owing to the central limit theorem) for large sample sizes. For example, de Gruijter et al. (2016) 
1 In this case they are both equal to t0.975σ/SOC where t0.975 is the 0.975 quantile of the Student-t distribution with n-1 

degrees of freedom, n is the sample size, σ is the standard deviation of the sampling distribution of the estimator, 

and SOC is the mean SOC stock.
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quantified SOC stocks in surface soils (0–7.5cm depth) in vertisols and alfisols across the 2083 

ha University of Sydney Holtsbaum Agricultural Research (“Nowley”) Farm in Australia 

(Stockmann et al. 2016) and estimated that their stratification had a standard error of 0.62 Mg ha-

1. Using the law of total variance, they estimated that SRS would have a standard error of 0.87 

Mg ha-1 , meaning that the stratification improved the relative error of the estimation by 29%.

However, this ex-post approach to evaluation of simple and stratified estimation 

strategies has three important limitations. First, the maximum number of strategies that can be 

compared by implementing a single sampling design is two (e.g., the previous example): (1) 

implementing a stratified design and (2) comparing it to SRS. We are unable to compare the 

implemented stratification with alternatives arising from different auxiliary data or even the same

auxiliary data but some different stratifications (e.g. a different number of k-means clusters). 

Second, ex-post evaluation does not fully apply to strategies besides SRS and stratified sampling.

The formulas for estimating the variance of balanced sampling estimates are not as firmly 

grounded as those for simple or stratified sampling so we do not wish to rely on them for 

evaluation. Moreover, we are primarily interested in the relative error bound, which is only 

directly related to the estimator variance for normally distributed estimators. Third, ex-post 

evaluation does not quantify the uncertainty of the performance estimate or any comparison. For 

example, the standard error of 0.62 Mg ha-1 estimated for the stratification of de Gruijter et al. 

(2016) is not accompanied by an uncertainty interval. One could be constructed by assuming a 

normal distribution of SOC stock within each stratum and constructing CIs on the chi-squared 

distribution. This would give a very wide 95% CI of 0.37 to 1.78 Mg ha-1. However, unlike the 

normality assumption used to justify the variance estimate itself, which is supported by the 

central limit theorem, a normality assumption here is less plausible.
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2.2.2 Ex-ante evaluation

An alternative to ex-post evaluation is ex-ante evaluation in which an estimation strategy is 

simulated rather than implemented. If we had knowledge of the SOC stock at every location in 

the field then we could simulate an estimation strategy by repeatedly generating random 

locations according to the sampling design, looking up the corresponding SOC stocks, and 

evaluating the estimator. Since we cannot (with current measurement technology) measure SOC 

stock at every location in the field, we approximate it using a digital SOC stock map. 

The fidelity of the SOC stock map is essential to the validity of ex-ante evaluation so we 

review several approaches to digital soil mapping and their consequences for ex-ante evaluation. 

One approach is to measure SOC stock at each pixel of a map. This was the approach of 

Mallarino and Wittry (2004), who used 0.2 ha pixel maps to ex-ante evaluate mean SOM 

estimation strategies in eight Iowa, USA fields. In each pixel they randomly selected an 80 m2 

subplot from which they collected 20-24 vertical cores to a depth of 15 cm, which they 

composited and analyzed using the Walkley-Black method. The major limitation of this 

approach to digital soil mapping is that it does not capture any variability within each pixel, e.g. 

in this case on a scale less than 45 m.

Short range variation can be incorporated into the SOC stock map using geostatistical 

simulation (Chilès and Delfiner, 2012). For example, Brus (2015) used a random forest model to 

generate their map from SOC stock measurements at convenient sample locations in three 

districts of Ethiopia. Importantly, independent predictions of SOC stock at each point in the field

produced an SOC stock map with unrealistically low variability, and so normally distributed 

noise was added. An important limitation of both of these simulation approaches is that they do 

not account for uncertainty in the underlying measurements or predictions.

Uncertainty in the SOC stock map can be incorporated into ex-ante evaluation by 
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using a Bayesian model, as shown by Hofman and Brus (2021) in the context of nitrate 

estimation strategies. Instead of generating a single digital soil map, many maps are drawn from 

the posterior distribution of the Bayesian model. This collection of maps captures the uncertainty

in the SOC stock map according to the model. For each map, we perform ex-ante evaluation of 

the estimation strategies under consideration. The result is that for each map we have a measure 

of estimation performance, e.g. relative error bound (section 2.3.3). Combining the maps, we 

obtain samples from the posterior distribution for the performance measure. These samples 

express our uncertainty in the performance of the estimation strategy due to our uncertainty in 

the SOC stock map. We can then summarize this distribution in various ways (e.g. the median 

and 95% CI).

The Bayesian approach allows us to quantify the uncertainty in the performance measures

of the estimation strategies. However, the uncertainty is limited to the scope of the model. For 

example, if we model the relationship between SOC stock and topographic wetness index (TWI) 

as linear, the Bayesian approach only captures our uncertainty in the slope of this linear 

relationship, not in the possibility that the relationship is non-linear. In other words, the 

uncertainty may be mis-stated because the model is wrong. In order to investigate the sensitivity 

of our results to this latter possibility, we suggest simply performing ex-ante evaluation with 

multiple Bayesian models.

3. Materials and methods

3.1 Study site

The Bondville site is a 34 ha field located in Champaign county, in central Illinois, USA. The 
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field is mapped as five closely related soil series classified as Mollisols (USDA Soil Taxonomy) 

with textural classes of silt loam to silty clay loam (Figure 2). According to SSURGO, the A 

horizon depths of these soils generally range 20 to 36cm, with a pH 5.6–7.4, and SOC stock in 

the 0–50cm profile of 98 (Wyanet) - 195 (Drummer) Mg ha-1 (Soil Survey Staff). 

The field at Bondville has been managed using a soybean-maize rotation cropping system

for 12+ years with no-till after soybean and conservation tillage after maize. This is a rain-fed 

agricultural system. In 2020, soybean was planted and fertilized with 168 kg-N ha-1 as 

monoammonium phosphate 11-52-0 fertilizer, 168 kg-K ha-1 as potassium chloride (0-0-60), and 

4.5 t ha-1 of soft lime before planting. Weeds were controlled using herbicides according to 

regional recommendations (Illinois Agronomy Handbook, 2017). There was a heavy presence of 

tall fescue (Festuca sp.) at the edges of the site and the grassed waterway in the middle of the 

field. The average monthly precipitation, maximum and minimum temperatures for the nearby (7

km) Champaign-Urbana Willard Airport station (USW00094870) in 2020 were 7.7cm, 17.3 and 

5.8 °C, respectively (NOAA). Growing-season precipitation (April-Sept) in 2020 was 10.1 cm.
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Figure 2: Regional map (left) of North Central USA showing cropland (USDA 2020 National 

Cultivated Layer) in green and the Bondville site location and field map (right) with 225 sample 

locations (black dots) used for SOC stock measurement, overlying and soil map units 

(SSURGO).

3.2 SOC stocks and auxiliary data

A set of reference SOC stock measurements were made as follows. On April 22, 2020, vertical 

core samples were taken to a depth of at least 60 cm (and up to 100 cm) using a Giddings probe 

(Giddings machine company: Winsor, CO) mounted on an all terrain vehicle. Soils were sampled

on a 35 m x 35 m grid, yielding 225 sampling locations within the cultivated area (Figure 2). The

cores were split into 0-30cm and 30-60cm depths and homogenized by hand crumbling. 

Gravimetric water content was measured by drying 5-7g of subsample at 100 °C for 24 hours. 

The bulk density (BD) was obtained from dry weight of soil from each section (g) over volume 

of the segmented portion of the soil core (cm3). The samples were prepared and sent to a third-

party lab to measure total soil carbon concentration by dry combustion method in a LECO 

CN828 . For soils with pH > 7.2, inorganic carbon was estimated gravimetrically after addition 
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of 1% HCl (Walthert et al., 2010).

We collected the following auxiliary information (covariates) for the site (Figure 3). 

From SSURGO we collected the map units and the gSSURGO estimate of 0-60 cm SOC stock 

for each map unit (obtained by linear interpolation of the 0-50cm and 50-100cm estimates). 

From the National Elevation Dataset we collected elevation from which we derived three 

topographic covariates: slope, aspect, andTWI. We used northing and easting geographic 

coordinates (measured in meters from the SW corner of the site). Finally, we used an SOC Index 

(SOCI) defined as blue / (green x red) (Thaler et al., 2019). We computed the index from a 

Sentinel-2 image retrieved on February 11, 2020, the most recent cloud free image available 

prior to planting. All auxiliary information was stored on a 10 m x 10 m raster grid (100 pixels 

ha-1) so that the cultivated area of the field contained 3,085 pixels. These covariates were chosen 

because of their 1) potential to predict SOC, 2) recommendation in SOC monitoring protocol 

guidance (Oldfield et al., 2021), and 3) availability in public databases for every point of the 

field, a requirement for those sampling designs (stratified and balanced) and estimation methods 

(model-assisted) that use covariates (section 2.1.2).
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Figure 3: Spatial patterns of covariates at Bondville site used for SOC stock estimation. 

Abbreviations: Topographic wetness index (TWI), soil organic carbon index (SOCI), Soil

Survey Geographic database (SSURGO).

3.3 Evaluation Methods

We evaluated the three sampling designs (simple random sampling, stratified sampling, and 

balanced sampling) using ex-ante evaluation (section 2.2.2). For this purpose the study site was 

represented by the points at the centers of the raster pixels described in section 3.2, i.e. 3,085 

points on a 10 m x 10 m grid. A Bayesian model of SOC stock (described next) was used to 

simulate 200 SOC stock maps. For each sampling design and sample size (15, 20, 25, …, 50) we 
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generated 200 samples. Each of the 200 x 200 combinations of an SOC stock map and sample 

led to a point estimate and CI for mean SOC stock.

The relative error was calculated for each of these estimates relative to the mean SOC 

stock of the corresponding map. For each map and sample design and sample size there were 

thus 200 relative errors, one for each sample. The relative error bound (see section 2.1.3) for this 

map was then calculated as the 95th percentile of these 200 values. There is thus a relative error 

bound for each of the 200 posterior maps. For each map and sample the estimated CI either does 

or does not cover the true mean SOC stock. For each map, CI coverage is calculated as the 

proportion of the 200 estimated CIs (one for each sample) that covers the true mean SOC stock.

Our primary model of SOC stock was kriging with external drift (KED), also known as 

universal kriging or regression kriging (Pebesma, 2006). Because the SSURGO SOC stock is 

constant within each map unit, including both the map units and SSURGO SOC stock would 

lead to a singular regression design matrix, so we omitted the map unit in the KED model. We 

used an exponential variogram for the KED model. After standardizing the outcome and 

covariates, the following non-informative prior distributions were put on the egression 

coefficients β, variogram scale α , variogram nugget σ , and variogram range ρ:

β  ~ Normal (0, 2.5 ) ,  α  ~ Exponential (1 ) , σ  ~ Exponential (1 ) ,  ρ  ~ Uniform (a , b ), where a=22 

m and b=788 m are the minimum and maximum distances, respectively, between sample points 

in the reference SOC stock design (Figure 2). The KED model was fit using the Markov Chain 

Monte Carlo software Stan (Carpenter et al., 2017). We generated 4 chains with 1000 iterations 

each, saving the last 500 to produce 2000 samples from the joint posterior parameter distribution.

We assessed mixing using the criteria R̂<1.05 and neff /N > .001 where R̂ is the Gelman-Rubin 

convergence statistic and neff is the effective sample size (Gelman et al., 2013).

For the purpose of sensitivity analysis, we considered an alternative SOC stock model 
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using Bayesian Additive Regression Trees (BART) (Chipman et al., 2010).  BART was chosen 

because, compared to KED, its modeling approach is substantially different which is desirable 

for the sensitivity analysis. The BART model consists of an ensemble of regression trees which 

are non-linear compared to the linear regression term of KED. The trees are constrained to be 

weak learners but unlike related machine learning methods such as Gradient Boosted Trees 

(Hastie et al., 2009), this is accomplished using a prior and likelihood to obtain a Bayesian 

statistical model. Unlike KED, which uses a spatially autocorrelated error term, BART has a 

spatially independent Gaussian error term. We included all of the available covariates (section 

3.2) in the BART model and fit the model in R using the BART package (Sparapani et al., 2021).

For both KED and BART models, we included a measurement error term. Following 

Hofman and Brus (2021), we assumed a normally distributed measurement error informed by the

prior literature. Specifically, we assumed a measurement standard deviation of 0.15 g cm-3 for 

bulk density and 0.16% for SOC concentration. We assumed these errors were independent so 

that the measurement standard deviation for SOC stock was 1.44 Mg ha-1. These errors were 

incorporated into the simulations by subtracting the corresponding variance from the nugget of 

the KED model and the Gaussian error of the BART model.

For stratified designs we used the standard k-means clustering algorithm (de Gruijter et 

al., 2006). As mentioned above (section 2.1.1) this does not accommodate categorical covariates 

so the SSURGO map unit was not included. For rescaling, our default method was z-score 

standardization, though we also considered percentile rank and min-max. In the absence of prior 

information on the variability of SOC stock within each stratum, we used proportional allocation 

of samples (de Gruijter et al., 2006). Since uncertainty quantification is essential, each stratum 

must have at least 2 samples. Thus the number of strata was set such that, under proportional 

allocation, each stratum received at least two samples. We also considered this with 3, 4, or 5 
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samples per stratum. For balanced sampling we included all covariates and generated samples in 

R using the BalancedSampling package (Grafström and Lisic, 2019). We also considered a 

model-assisted estimator in conjunction with SRS using generalized regression in the mase R 

package (McConville et al., 2018).

4. Results

The mean SOC stock at the 225 locations was 101.8 Mg ha-1 with a standard deviation of 26.0 

Mg ha-1 (Figure S1). Before fitting models (section 4.1), we examined the relationship between 

these measurements and each of the covariates (Figure 4). We found stronger linear relationships

between measured SOC stock and SOCI (R2=0.31), TWI (R2=0.21), SSURGO Map Unit 

(R2=0.17), and SSURGO SOC stock (R2=0.16).
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Figure 4: Relationship between SOC stock and each covariate. Abbreviations: 

topographic wetness index (TWI), soil organic carbon (SOC), SOC index (SOCI), Soil 

Survey Geographic database (SSURGO).
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4.1 Bayesian SOC maps

The Bayesian KED model was fit to the 225 measurements and their associated covariates. Both 

TWI and SOCI had significant relationships with SOC stock in the model (Figure 5). The 

estimated spatial autocorrelation structure has a posterior nugget-to-sill ratio 0.83 (95% CI 0.39 

to 1.0) and range 430 m (95% CI 53 to 768). The median Bayesian R2 (Gelman et al., 2019) of 

the KED model was 0.46. Note that we used a linear KED model as opposed to log-linear 

because the linear model outperformed the log-linear model in terms of mean absolute error 

under 10-fold cross validation (Figure S2).

Figure 5: Estimated coefficients in the Bayesian Kriging with External Drift model, after

standardizing predictors and outcome. Dots are posterior medians and error bars span 

posterior 50% and 95% intervals. Abbreviations: topographic wetness index (TWI), soil 

organic carbon (SOC), SOC index (SOCI), Soil Survey Geographic database (SSURGO).
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Maps of the posterior mean and standard deviation (summarizing our uncertainty in the 

SOC stock at each point) are shown in Figure 6, along with posterior simulations of SOC stock 

which will be used to perform the ex-ante evaluation in the next section. Based on these posterior

simulations, we estimated the mean SOC stock to 60 cm depth to be 103.4 Mg ha-1 (95% CI 

100.8 to 106.6 Mg ha-1). For comparison, previous studies of agricultural fields in the region 

have estimated mean SOC stock to 60 cm depth ranging from 91.0 Mg ha-1 (Zuber et al., 2015) 

to 172.6 Mg ha-1 (Johnson et al., 2011) and the SSURGO estimate for the site (obtained by 

weighting an estimate for each map unit) is 140.8 Mg ha-1. The within-field standard deviation of

SOC stock was 26.8 Mg ha-1 (95% CI 24.9 to 29.6) for a coefficient of variation of 26% (95% CI

24% to 29%). Thus the assumed measurement standard deviation of 1.44 Mg ha-1 (section 3.3) is 

very small compared to the within-field SOC stock standard deviation.
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Figure 6: Modeled SOC stock map (A) posterior mean, (B) standard deviation, and (C) 4

(of 200) randomly chosen simulations used for ex-ante evaluation.

To examine the sensitivity of the ex-ante evaluation to this choice of mapping model we 

also considered the BART model. While the BART model produced very similar estimates of 

mean SOC stock (Figure S3) and explained a similar proportion variance (R2 =0.48), we 

observed a non-linear relationship between the BART and KED within-field predictions (Figure 

S4). This suggests that BART and KED give qualitatively different SOC stock maps so that 
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comparing the results of ex-ante evaluation using the two models is a substantive test of 

sensitivity.

4.2 ex-ante evaluation

The stratifications produced for various sample sizes are displayed in Figure S5. Estimates of the

relative error performance of the three primary estimation strategies are displayed in Figure 7A. 

For a given strategy and sample size, our evaluation technique produces samples of the 

distribution of relative error bound (section 2.1.3), one for each posterior map (Figure 6). We use

the median of this distribution as a point estimate (i.e. a single number summary). Across the 

range of sample sizes, these point estimates show that balanced sampling outperforms stratified 

sampling outperforms simple random sampling. For each posterior map we can also calculated 

the confidence interval coverage rate, and we found that the 95% intervals for all three strategies 

obtain very nearly the nominal 95% rate (Figure S6). ex-ante evaluation results are qualitatively 

similar between the KED or BART SOC stock models (Figure 8), suggesting little sensitivity to 

this choice.

To quantify the difference in performance between any two strategies at a given sample 

size, our evaluation again produces a distribution-- now of the difference in relative error 

between the strategies. For each of the three pairs of comparisons between our three strategies, 

these distributions are shown in Figure 7B using the median, 50% and 95% intervals. We see that

while there is little uncertainty that balanced sampling outperforms SRS, there is more 

uncertainty in the comparison of stratified sampling and SRS, and greater uncertainty comparing 

balanced and stratified sampling. 
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Figure 7: (A) Relative error performance of estimation strategies with dots and vertical 

lines showing posterior medians and 50% CIs, respectively, and (B) relative difference in

relative error between strategies, showing posterior median (black), 50% CI (dark gray), 

and 95% CI (light gray).
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Figure 8: Sensitivity of relative error ex-ante evaluation results to choice of SOC stock 

map model. Dots and vertical lines show posterior median and 50% CI, respectively.

To assess the relative benefit of each of the covariates to the estimation performance, we 

considered designs including just one of the covariates. Stratifying on the Sentinel-2 SOCI 

covariate alone performed about as well as stratifying on all of the covariates together (Figure 9).

At the same time, stratifying on easting performed about as well as no stratification, i.e. SRS. We

also evaluated compact geographic stratification, which performed better than SRS but fell short 

of the full stratification (Figure S7).

The performance of the stratified estimation strategy was not sensitive to the minimum 

number of samples per stratum or the distance measure used on the covariates (Figures S8-S9). 
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Covariates were also incorporated into an estimation strategy with simple random sampling with 

a generalized regression model-assisted estimator. Compared to simple random sampling with 

the Horvitz-Thompson estimator, the model-assisted estimator with all covariates was an 

improvement, and using lasso to select covariates improved performance further (Figure S10). 

However, neither of these performed as well as the strategies with stratified or balanced 

sampling strategies.
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Figure 9: Performance of stratified sampling with various single covariates compared to 

no covariates, i.e. simple random sampling (SRS), and all covariates. Each design uses 30

samples (1.0 samples ha-1). Bars and lines display posterior median and standard 

deviation, respectively.

5. Discussion and conclusions

We found that both stratified and balanced sampling strategies offer potentially substantial 

improvements in relative error over the SRS baseline. This result is promising because our 

implementation of these strategies only used auxiliary information that was already collected in 

public databases (SSURGO, NED) and so can easily be adopted for future mean SOC stock 

estimation studies. Model-assisted estimation did not show as much of an improvement over the 

baseline, suggesting that auxiliary information is most effectively incorporated in the sampling 

design stage. Our stratification, which requires no preliminary field work, likely achieves a 15% 

improvement over SRS across a range of sample sizes (Figure 9). As a function of the sample 

size n, relative error declines √n. This 15% improvement for a fixed sample size is thus 

equivalent to 28% fewer samples needed to achieve a given relative error.

Our sensitivity analysis found the results to be robust to the choice of SOC stock model, 

including both non-linear spatial autocorrelation (KED) and non-linear regression (BART). 

Because balanced sampling is predicated on a linear regression model, it is encouraging that 

balanced sampling performed well here. The Bayesian approach found substantial uncertainty in 

the performance of the estimation strategies and their comparison. This uncertainty stemmed 

from uncertainty in the SOC map models. To reduce the uncertainty about the performance 

benefits of these estimation strategies we would need to reduce the uncertainty of the SOC stock 
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maps used in evaluation. There are several ways to achieve this. Incorporating additional 

auxiliary information (e.g. proximal or remote sensing) may be helpful. Increasing the sample 

size of the reference sampling design, and improving the reference sampling design (e.g. an 

optimized model-based design instead of a grid). In particular, better mapping of short-range 

variation would be possible with more measurements made on distances less than the 35 m grid 

used here. In addition to reducing the uncertainty of the SOC stock maps it would be useful to 

use an auxiliary probability sample to obtain an independent estimate of the mean SOC stock and

validate the maps themselves (Brus et al., 2011; Wadoux and Brus, 2021).

To compare our results to the literature, note that we found that using SRS approximately

1.0 samples per hectare would be needed to achieve a relative error bound of 10% (Figure 7). 

This matches prior estimates for SOM and SOC variability in similarly sized agricultural fields 

(Figure 2 of Lawrence et al., 2020), suggesting that those estimates could be used successfully to

select a sample size for SRS in other fields. As described in the introduction there is a dearth of 

prior literature on the performance of stratified or balanced sampling in agricultural fields. The 

closest comparison is the stratification of an Australian farm (de Gruijter et al., 2016; section 

2.2.1) which achieved a 29% improvement over SRS (section 2.4.1) compared to our 15% 

improvement, though the former relied on an initial reconnaissance sampling effort with 

measurements of SOC stocks to build the stratification.

The reliance on an imperfect ground truth map of SOC stock is a notable challenge to any

ex-ante evaluation (section 2.2). Building on the methodology of past studies, we mitigated this 

challenge by examining the uncertainty and sensitivity of our results. However, both models as 

well as the stratified and balanced strategies shared the same set of covariates. This may have led

to overestimating the performance of these strategies. We took steps to minimize potential 

overestimation of performance, including selecting a parsimonious set of covariates identified in 
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the literature and using stochastic models so that the simulated maps were not deterministic 

functions of the covariates. Our evaluation of strategies employing a single covariate (Figure 9) 

also shows that the performance benefit is not dependent on a complete coincidence of 

covariates. One way to avoid the issue is to use a ground truth model that does not employ 

covariates at all. We considered such a model (ordinary kriging) but it was a poor fit to the SOC 

stock measurements (Figure S2), undermining its utility for SOC stock mapping. With many 

more SOC stock measurements, the reliance on covariates for mapping SOC stock could be 

removed.

Our results can be used to inform future studies or monitoring projects. Where there are 

insufficient resources for reconnaissance prior to constructing a sample design, our results 

suggest that the use of publicly available information in stratified or balanced sampling can still 

offer substantial benefits over SRS. These findings also apply indirectly to quantifying the 

change in mean SOC stock over time when using unpaired samples (i.e. different sampling 

locations at different time points). However, the magnitude of the benefits of these sampling 

designs may vary across sites and may be related to factors such as soil type. In order to test the 

external validity of our findings, they will need to be replicated in other fields. 
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